Math, asked by sreehitha4493, 3 months ago

If x^4- x^3 - 4x^2 -x +1=0 then sum of all possible value of x+1/x

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: {x}^{4} -  {x}^{3} -  {4x}^{2} - x + 1 = 0

Divide both sides by x², we get

\rm :\longmapsto\: {x}^{2} - x - 4 -  \dfrac{1}{x}  +  \dfrac{1}{ {x}^{2} }  = 0

can be rewritten as

\rm :\longmapsto\:\bigg( {x}^{2}  + \dfrac{1}{ {x}^{2} }  \bigg)  - \bigg( x+ \dfrac{1}{x}  \bigg)  - 4 = 0

 \red{\rm :\longmapsto\:Let \: \bigg(x + \dfrac{1}{x}  \bigg)  = y} \\  \red{ \rm\bigg(x+ \dfrac{1}{x}  \bigg)  ^{2} =  {y}^{2}}  \\  \red{ \rm \:  {x}^{2} +  \dfrac{1}{ {x}^{2} } + 2 =  {y}^{2}} \\  \red{ \rm \:  {x}^{2} +  \dfrac{1}{ {x}^{2}} =  {y}^{2} - 2}

On substituting all these values, we get

\rm :\longmapsto\: ({y}^{2} - 2) - y - 4 = 0

\rm :\longmapsto\: {y}^{2} - 2- y - 4 = 0

\rm :\longmapsto\: {y}^{2} - y - 6 = 0

\rm :\longmapsto\: {y}^{2} - 3y + 2y - 6 = 0

\rm :\longmapsto\:y(y - 3) + 2(y - 3) = 0

\rm :\longmapsto\:(y - 3)(y + 2) = 0

\rm :\implies\:y = 3 \:  \:  \:  \: or \:  \:  \: y =  - 2

\bf\implies \:x + \dfrac{1}{x} = 3 \:  \:  \: or \:  \:  \: x + \dfrac{1}{x} =  - 2

Hence,

 \purple{\bf :\longmapsto\:Possible \: values \: of \: x + \dfrac{1}{x} \: are \: 3, \:  -  \: 2 }

Additional Information:-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac
Similar questions