Math, asked by singh1705harsh, 6 months ago

If x=4t/1+t^2 and y=3{1-t^2/1+t^2} then show that dy/dx= -9x/4y

Answers

Answered by Anonymous
8

Solution:-

:- We have

 \rm \implies \: x =  \dfrac{4t}{1 +  {t}^{2} }  \:  \:  \: and \:  \: y =3 \bigg(  \dfrac{1 -  {t}^{2} }{1 +  {t}^{2} }  \bigg)

Now Let

 \rm \implies \: t =  \tan  \theta

We get

 \rm \implies x =  \dfrac{4 \tan\theta }{1 +  { \tan}^{2} \theta }  \: and \: y = 3 \bigg( \dfrac{1 -  \tan^{2} \theta}{ 1+ \tan ^{2}  \theta }  \bigg)

we know that Trigonometric identities

 \rm \to \:  \dfrac{2 \tan  \theta}{1 +  \tan ^{2}   \theta}  =  \sin2 \theta \: and  \:  \: \:  \dfrac{1 -  \tan^{2}  \theta }{1 + \tan^{2}  \theta  }  =  \cos2 \theta

Apply this identity

 \rm \implies \: x = 2 \sin \theta \:  \: and \: y = 3 \cos  2 \theta

Now different x and y with respect to theta

 \rm \implies \:  \dfrac{dx}{d \theta}  = 4 \cos 2 \theta \:  \: and \:  \:  \dfrac{dy}{d \theta}  =   - 6 \sin2 \theta

Now we have to find dy/dx

We can write as

 \rm \implies \dfrac{ \dfrac{dy}{d \theta} }{ \dfrac{dx}{d \theta} }  =  \dfrac{dy}{d x}  =  \dfrac{ - 6 \sin2 \theta }{4 \cos2\theta}

Now take

 \rm \implies \: x = 2 \sin 2\theta

Multiply by 3 on both side

 \rm  \implies \: 3x = 6 \sin2 \theta

Now take

 \rm \implies \: y = 3 \cos 2 \theta

Multiply on both side by 4

 \rm \implies4y = 4 \times 3 \cos 2 \theta

 \rm \implies \:  \dfrac{4}{3} y = 4 \cos2 \theta

Now put the value on

\rm \implies   \dfrac{dy}{d x}  =  \dfrac{ - 6 \sin2 \theta }{4 \cos2\theta}

 \rm \implies \dfrac{dy}{dx}  =  \dfrac{ - 3x}{ \dfrac{4y}{3} }  =  \dfrac{ - 9x}{4y}

Hence proved

Similar questions