If x = √5 - √2 / √5 + √2 AND y = √5 + √2 / √5 - √2 , find the value of x² + y² + xy
Answers
Answered by
18
Answer:
x² + y² + xy = 20.78
Step-by-step explanation:
x = (√5 - √2) / (√5 + √2)
y = (√5 + √2) / (√5 - √2)
x² + y² + xy
= ( x + y ) ² - xy
x + y = (√5 - √2) / (√5 + √2) + (√5 + √2) / (√5 - √2)
=>x + y =( (√5 - √2)² + (√5 + √2)²) / (√5² - √2²)
=>x + y =(5 + 2 - 2√5 √2 + 5 + 2 + 2√5 √2) / (5 - 2)
=>x + y =(14) / (3)
=> x +y = 14/3
xy =( (√5 - √2) / (√5 + √2) ) ×( (√5 + √2) / (√5 - √2))
xy = 1
( x + y ) ² - xy
= (14/3)² - 1
= 196/9 - 1
= (196-9)/9
= 187/9
= 20.78
sakshi71899:
thanks
Similar questions