Math, asked by simrancore00, 3 months ago

if x=5+2√6 and y=1/x find the value of x²+y²​

Answers

Answered by lakshmiagrawalanmol
5

Answer:

see the pic above

Step-by-step explanation:

hope it helps ✌️

Attachments:
Answered by Anonymous
6

Given

 \tt \to \: x = 5 + 2 \sqrt{6}

 \tt \to \: y =  \dfrac{1}{x}

To Find the value

 \tt \to \:  {x}^{2}  +  {y}^{2}

According to question

 \tt \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }

if

\tt \to \: x = 5 + 2 \sqrt{6}

Then

\tt \to \:  \dfrac{1}{x}=  \dfrac{1}{5 + 2 \sqrt{6} }

Rationalize The Denominator

\tt \to \:  \dfrac{1}{x}=  \dfrac{1}{5 + 2 \sqrt{6} } \times  \dfrac{5  - 2 \sqrt{6} }{5 - 2 \sqrt{6} }

\tt \to \:  \dfrac{1}{x}=  \dfrac{5 - 2 \sqrt{6} }{(5 ) {}^{2}  - (2 \sqrt{6}) {}^{2}  }

\tt \to \:  \dfrac{1}{x}=  \dfrac{5 -  2 \sqrt{6} }{25  - 24  } = 5 - 2 \sqrt{6}

Now we have to find

 \tt \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }

we can write as

 \tt \to \bigg(x +  \dfrac{1}{x}  \bigg) ^{2}   =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2 \times x \times  \dfrac{1}{x}

 \tt \to \bigg(x +  \dfrac{1}{x}  \bigg) ^{2}   =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2

 \tt \to \bigg(x +  \dfrac{1}{x}  \bigg) ^{2}   - 2 =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }

Put the value

 \tt \to \bigg(5 + 2 \sqrt{6}  + 5 - 2 \sqrt{6} \bigg)^{2}  - 2 =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }

\tt\to\:{x}^{2}+\dfrac{1}{{x}^{2}}=(10)^{2}-2

\tt\to\:{x}^{2}+\dfrac{1}{{x}^{2}} =100-2

\tt\to\:{x}^{2}+\dfrac{1}{{x}^{2}}=98

Answer

\tt\to\:{x}^{2}+\dfrac{1}{{x}^{2}}=98

Similar questions