Math, asked by ramsha517, 5 months ago

if x = 5-2√6, find the value of x²+1/x²​

Answers

Answered by 2005amirtha
3

Step-by-step explanation:

 {(5 - 2 \sqrt{6}) }^{2}  +  \frac{1}{ {(5 - 2 \sqrt{6)} }^{2} }  \\

take LCM !!!

 \frac{ {x}^{2}( {x}^{2}) + 1  }{ {x}^{2} }

then solve it!!

Answered by Blossomfairy
6

Given :-

  \bullet \:  \: \sf{x = 5 - 2 \sqrt{6} }

To find :-

  • x²+1/x²

According to the question,

  \implies\sf{ \dfrac{1}{x}  =  \dfrac{1}{5 - 2 \sqrt{6} } \times  \dfrac{5  + 2 \sqrt{6} }{5 + 2 \sqrt{6} }  }

\implies \sf{ \frac{1}{x}  =  \frac{5 + 2 \sqrt{6} }{25 - 24}  = 5 + 2 \sqrt{6 }  \:\green\bigstar}

  \implies\sf{ x  +  \dfrac{1}{ x}  = 5 - 2 \sqrt{6} + 5  + 2 \sqrt{6}  } \\

 \implies \sf{x +  \frac{1}{x} = 10 \:   \pink\bigstar }

Squaring on both the sides :

 \implies \sf{ {x}^{2} +  \dfrac{1}{ {x}^{2} }  =  {10}^{2}  } \\  \\  \implies \sf{ {x}^{2}  +  \frac{1}{ {x}^{2}} + 2 \times x \times  \frac{1}{ x}   = 100} \\  \\  \implies \sf{{x}^{2} +  \frac{1}{ {x}^{2} }  + 2= 100  } \\  \\  \implies \sf{ {x}^{2} +  \frac{1}{ {x}^{2} } = 100 - 2  } \\  \\  { \underline{ \boxed{\implies {\sf{ {x}^{2}  +  \frac{1}{ {x}^{2} }  = 98}}}}}  \orange\bigstar

Similar questions