Math, asked by gayathrisakthivel328, 1 year ago

if x = √5+2 find the value of x2 + 1/x2

Answers

Answered by BrainlyQueen01
209

Hey mate!


_______________________


Given :


x = √5 + 2


To find :


x² + 1 / x²


Solution :


x = √5 + 2


⇒ 1 / x = 1 / √5 + 2


⇒ 1 / x = 1 / √5 + 2 ×  √5 - 2 /  √5 - 2


⇒ 1 / x =  √5 - 2 / ( √5 )² - ( 2 ) ²


⇒ 1 / x =  √5 - 2 / 5 - 4


⇒ 1 / x =  √5 - 2


Now,


x + 1 / x =  √5 + 2 +  √5 - 2


x + 1 / x = 2 √5


Again,


On squaring both sides, we have ;


( x + 1 / x )² = ( 2 √5 ) ²


⇒ x² + 1 / x² + 2 = 20


⇒ x² + 1 / x² = 20 - 2


⇒ x² + 1 / x² = 18


Hence,


The value of x² + 1 / x² = 18.


_______________________


Thanks for the question!


☺️☺️☺️

Answered by Anonymous
148
\underline{\bold{Given:-}}

x = \sqrt{5} + 2

\underline{\bold{To\:find:-}}

 {x}^{2} + \frac{1}{ {x}^{2} } \\

\underline{\bold{Solution:-}}

x = \sqrt{5} + 2 \\ \\ \frac{1}{x} = \frac{1}{ \sqrt{5} + 2 } \\ \\ \bold{On \: rationalising \: them} \\ \\ \frac{1}{x} = \frac{1}{ \sqrt{5} + 2 } \times \frac{ \sqrt{5} - 2}{ \sqrt{5} - 2}\\

\bold{Using \: identity } \\

\bold {{a}^{2} - {b}^{2} = (a + b)(a - b)}\\ \\ \frac{1}{x} = \frac{ \sqrt{5} - 2 }{ { (\sqrt{5}) }^{2} - {2}^{2} } \\ \\ \frac{1}{x} = \frac{ \sqrt{5} - 2 }{5 - 4} \\ \\ \frac{1}{x} = \sqrt{5} - 2 \\

Now,

x + \frac{1}{x} = \sqrt{5} + 2 + \sqrt{5} - 2 \\ \\ x + \frac{1}{x} = 2 \sqrt{5} \\ \\ \bold{On \: squaring \: both \: sides} \\ \\ {(x + \frac{1}{x}) }^{2} = {(2 \sqrt{5} )}^{2} \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } + 2 \times x \times \frac{1}{x} = 4 \times 5 \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } + 2 = 20 \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } = 20 - 2 \\ \\\boxed{\bold{ {x}^{2} + \frac{1}{ {x}^{2} } = 18}}

⭐Hope it may help you⭐
Similar questions