If x=5+2 root 6 and xy=1 find the value of x^2+y^2/xy
Answers
Answered by
11
Answer:
98
Step-by-step explanation:
⇒ x = 5 + 2√6
Given,
xy = 1 ⇒ y = 1 / x
⇒ y = 1 / x
⇒ y = 1 / ( 5 + 2√6 )
Multiplying as well as dividing RHS by 5 - 2√6:
⇒ y = ( 5 - 2√6 ) / ( 5 + 2√6 )( 5 - 2√6 )
⇒ y = ( 5 - 2√6 ) / { 5^2 - ( 2√6 )^2 } Using ( a + b )( a - b ) = a^2 - b^2
⇒ y = ( 5 - 2√6 ) / ( 25 - 24 )
⇒ y = ( 5 - 2√6 ) / 1
⇒ y = 5 -2√6
Therefore,
⇒ x^2 + y^2
⇒ ( 5 + 2√6 )^2 + ( 5 - 2√6 )^2
⇒ { ( 5 )^2 + ( 2√6 )^2 + 2( 5 )( 2√6 ) } + { ( 5 )^2 + ( 2√6 )^2 - 2( 5 )( 2√6 ) }
⇒ 5^2 + ( 2√6 )^2 + 5^2 + ( 2√6 )^2
⇒ 25 + 24 + 25 + 24
⇒ 50 + 48
⇒ 98
Similar questions
Business Studies,
5 months ago
Science,
5 months ago
Math,
10 months ago
Math,
10 months ago
History,
1 year ago