Math, asked by khwaish59, 1 year ago

if x = √5 - 2 then find 1) x + 1/x 2) x2 + 1/x2​

Answers

Answered by ltsCuteBoy
1

Here is your answer :

x =  \sqrt{5}  - 2 \\  \\  \frac{1}{x}  =  \frac{1}{ \sqrt{5}  - 2}  \\  \\  \frac{1}{x}  =  \frac{1}{ \sqrt{5} - 2 }  \times  \frac{ \sqrt{5} + 2 }{ \sqrt{5}  + 2}  \\  \\  \frac{1}{x}  =  \frac{ \sqrt{5} + 2} {( \sqrt{5} ) {}^{2}  - (2) {}^{2} }  \\  \\  \frac{1}{x}  =  \frac{ \sqrt{5} + 2 }{5 - 4}  \\  \\  \frac{1}{x}  =  \sqrt{5}  + 2

Now,

x +  \frac{1}{x}  =  \sqrt{5}  - 2 +  \sqrt{5}  + 2 \\  \\ \boxed{ \bf x +  \frac{1}{x}  = 2 \sqrt{5} } \\  \\ \bf on \: squaring \: both \: side s-  \\  \\ (x +  \frac{1}{x} ) {}^{2}  = (2 \sqrt{5} ) {}^{2}  \\  \\ x {}^{2}  +  \frac{1}{x {}^{2} }  + 2 = 20 \\  \\ x {}^{2}  +  \frac{1}{x {}^{2} } = 20 - 2 \\  \\ \boxed{ \bf x {}^{2}  +  \frac{1}{x {}^{2} } = 18}

_______________________


khwaish59: tysm
ltsCuteBoy: Welcome :)
khwaish59: it was vry helpful to me
ltsCuteBoy: Glad to hear :)
Similar questions