Math, asked by chanchal5425, 9 months ago

if x=√5+2 then find x-1/x​

Answers

Answered by Anonymous
2

Answer:

  \ \frac{ \sqrt{5} + 2 - 1 }{ \sqrt{5 + 2} }

 \frac{ \sqrt{5} + 1 }{ \sqrt{5} + 2 }

5 + 2 \sqrt{5}   -   \sqrt{5}   - 2 \frac{}{}

3 \sqrt{5}

Answered by Rohith200422
9

Question:

If  x= \sqrt{5}+2 then find  x -  \dfrac{1}{x}

To find:

★ To find the value of  x .

Answer:

\underline{ \: \bold{ x -  \frac{1}{x}  = 4}\:} \: is \: the \: answer.

Given:

 x= \sqrt{5}+2

Step-by-step explanation:

 \bigstar \: x= \sqrt{5}+2

 \hookrightarrow  \dfrac{1}{x} =  \dfrac{1}{\sqrt{5}+2}

Now rationalising the denominator,

\hookrightarrow  \dfrac{ \sqrt{5} - 2 }{( \sqrt{5} + 2)( \sqrt{5} - 2)  }

It's of the form  {a}^{2} - {b}^{2}

\hookrightarrow  \dfrac{ \sqrt{5} - 2 }{5 - 4}

\hookrightarrow   \boxed{ \dfrac{1}{x}   = \sqrt{5} - 2 }

Now finding the value of  x-\dfrac{1}{x}

 \implies \: x -  \dfrac{1}{x}  =  \sqrt{5}  + 2 - ( \sqrt{5}  - 2)

 \implies \: x -  \dfrac{1}{x}  =  \sqrt{\not{5}}  + 2 -  \sqrt{\not{5}}   +  2

 \implies \: \boxed{ x -  \dfrac{1}{x}  = 4}

Formula used:

 \bigstar a^{2}-b^{2}=(a+b)(a-b)

Similar questions