Math, asked by mangilal83, 5 months ago

if x=5-√24 then find x square 1/ x square​

Answers

Answered by brainlyofficial11
2

Answer

we have,

  • x = 5 - √24

then,

 \frac{1}{x}  =  \frac{1}{5 -  \sqrt{24} }   \:  \:  \:  \:  \:  \:  \: \\  \\   \bold{on \: rationalization} \\  \\  : \implies  \frac{1}{x}  =  \frac{1 \times 5 +  \sqrt{24} }{5 -  \sqrt{24 }  \times 5 +  \sqrt{24} }  \\  \\  :  \implies  \frac{1}{x}  =   \frac{5 +  \sqrt{24} }{ {5}^{2}  -  { \sqrt{24} }^{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   : \implies  \frac{1}{x}  =  \frac{5 +  \sqrt{24} }{25 - 24}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  : \implies  \boxed{ \frac{1}{x}  = 5 +  \sqrt{24} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

now,

\bigg \{x +  \frac{1}{x}  \bigg \} ^{2}   =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + \cancel{ x }\times  \frac{1}{ \cancel{x}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  :  \implies \bigg \{5 +   \cancel{\sqrt{24}} + 5 -   \cancel{\sqrt{24}}   \bigg \} ^{2}   = {x}^{2}   +  \frac{1}{ {x}^{2} }  \\  \\  :  \implies \bigg \{5 + 5 \bigg \} ^{2}   =  {x}^{2}  +   \frac{1}{ {x}^{2} }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  : \implies  {x}^{2}  +  \frac{1}{ {x}^{2} }  = (10)^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  :  \implies \boxed{  \pink{ {x}^{2}  +  \frac{1}{ {x}^{2} }  = 100}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so, value of x² + 1/x² is 100

Similar questions