Math, asked by gsricharan85009442, 1 month ago

If x=5+2root6 and cos theta=(2rootx)/(x-1) , then cosec^2theta+8=??

Attachments:

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\tt{\blue{x=5+2\sqrt{6}\,\,\,\,and\,\,\,\,cos(\theta)=\dfrac{2\sqrt{x}}{x-1}}}

Now,

\sf{cos(\theta)=\dfrac{2\sqrt{5+2\sqrt{6} }}{5+2\sqrt{6}-1}}

\sf{\implies\,cos(\theta)=\dfrac{2\sqrt{3+2+2\sqrt{6} }}{4+2\sqrt{6}}}

\sf{\implies\,cos(\theta)=\dfrac{2\sqrt{(\sqrt{3})^2 +(\sqrt{2})^2+2\cdot\sqrt{3}\cdot\sqrt{2}  }}{2\sqrt{2}(\sqrt{2}+\sqrt{3})}}

\sf{\implies\,cos(\theta)=\dfrac{\sqrt{(\sqrt{3}+\sqrt{2})^2  }}{\sqrt{2}(\sqrt{2}+\sqrt{3})}}

\sf{\implies\,cos(\theta)=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{2}(\sqrt{2}+\sqrt{3})}}

\sf{\implies\,cos(\theta)=\dfrac{1}{\sqrt{2}}}

So,

\sf{cosec^2(\theta)+8}

\sf{=\dfrac{1}{sin^2(\theta)}+8}

\sf{=\dfrac{1}{1-cos^2(\theta)}+8}

\sf{=\dfrac{1}{1-\bigg(\dfrac{1}{\sqrt{2} }\bigg)^2}+8}

\sf{=\dfrac{1}{1-\dfrac{1}{2 }}+8}

\sf{=\dfrac{1}{\dfrac{1}{2 }}+8}

\sf{=2+8}

\sf{=10}

Similar questions