Math, asked by vani4716, 1 year ago

if X=(√5+√3)/(√5-√3)=1/y then the value of x^3+y^3=?

Answers

Answered by allysia
2

x =  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }   =  \frac{1}{y}
Now let's rationalise the terms,

x =  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  \times   \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{3} }  \\   =   \frac{ {( \sqrt{5} +  \sqrt{3} )  }^{2} }{ {{ \sqrt{5} }^{2}  -   { \sqrt{3} }^{2}   } }  \\  =  \frac{8 + 2 \sqrt{15} }{2}  \\  =  \frac{2(4 +  \sqrt{15}) }{2}  \\ =  4 +  \sqrt{15}


Now,
here,
x = 4 +  \sqrt{15}  =  \frac{1}{y} \\ y =  \frac{1}{4 +  \sqrt{15} }


Again, rationalise the term
y =  \frac{1}{ 4 + \sqrt{15} }  \times  \frac{4 -  \sqrt{15} }{4 -  \sqrt{15} }  \\  =  \frac{4 - \sqrt{15} }{16 - 15}  \\  = 4 -  \sqrt{15}

Therefore,

x = 4 +  \sqrt{15}  \\  \\ and \\  \\ y = 4 -  \sqrt{15}


  {x}^{3}  +  {y}^{3}  =  {(x + y)}^{3}  - 3xy(x + y) \\



Substitute for x and y and you'll get,

 {x}^{3}  +  {y}^{3}  \\  = (4 +  \sqrt{15}  +4 -   \sqrt{15} ) - 3(4 +  \sqrt{15} )(4 -  \sqrt{15} )(4  +  \sqrt{15}  + 4 -  \sqrt{15} ) \\  = 8 - 3(16 - 15)(8) \\  = 8 - 24 \\  =    - 16


Therefore your answer will be -16.
Similar questions