Math, asked by savitrikumarii121, 10 months ago

if X=5-√3/5+√3 and y=5+√3/5-√3 show that x²-y²= -10√3/11

Answers

Answered by Anonymous
2

Step-by-step explanation:

hope \: it \: will \: help \: u

Attachments:
Answered by HariesRam
7

x =  \frac{5 -  \sqrt{3} }{5 +  \sqrt{3} }  \\  \\ x =  \frac{5  -   \sqrt{3} }{5 +  \sqrt{3} }  \times  \frac{5 -  \sqrt{3} }{5 -  \sqrt{3} }  \\  \\ x =  \frac{ {(5 -  \sqrt{3}) }^{2} }{ {5}^{2} -  { \sqrt{3} }^{2}} \\  \\ x =  \frac{25 - 10 \sqrt{3} + 3 }{25 - 3}   \\  \\ x =  \frac{28 - 10 \sqrt{3} }{22} \\  \\ x =  \frac{14 - 5 \sqrt{3} }{11}.

y =  \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} }  \\  \\ y =  \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} }  \times  \frac{5 +  \sqrt{3} }{5 +  \sqrt{3} }  \\  \\ y =  \frac{ {5 +  \sqrt{3} }^{2} }{ {5}^{2} -  { \sqrt{3} }^{2}  }  \\  \\ y =  \frac{25 + 10 \sqrt{3} + 3 }{25 - 3}  \\  \\ y =  \frac{28 + 10 \sqrt{3} }{22}  \\  \\ y =  \frac{14 + 5 \sqrt{3} }{11}

x - y =  \frac{14 - 5 \sqrt{3} }{11} -  \frac{14 + 5 \sqrt{3} }{11}  \\  \\ x  - y =  \frac{14 - 5 \sqrt{3} - 14 - 5 \sqrt{3}  }{11}  \\  \\ x - y =  \frac{ - 10 \sqrt{3} }{11}

Similar questions