Math, asked by Ruchi901, 1 year ago

If x=√5+√3/√5-√3 and y=√5-√3/√5+√3 then find x+y+xy

Answers

Answered by Anonymous
57
x= 8 + 2√15 / 2 = 4 + √15
y = 8 - 2√15 / 2 = 4 - √15

x+y = 8

xy = 16-15 = 1

x+y+xy = 8+1 = 9
Answered by eudora
67

Answer:

x + y + xy = 9

Step-by-step explanation:

If x = \frac{(\sqrt{5}+\sqrt{3)}}{(\sqrt{5}-\sqrt{3)}} and y = \frac{(\sqrt{5}-\sqrt{3)}}{(\sqrt{5}+\sqrt{3)}}

Then (x + y) = \frac{(\sqrt{5}+\sqrt{3)}}{(\sqrt{5}-\sqrt{3)}}+\frac{(\sqrt{5}-\sqrt{3)}}{(\sqrt{5}+\sqrt{3)}}

                   = \frac{(\sqrt{5}+\sqrt{3})^{2} +(\sqrt{5}-\sqrt{3})^{2} }{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}

                   = \frac{5+3+2\sqrt{15}+5+3-2\sqrt{15}}{5-3}  [Since (a + b)(a - b) = a² - b²]

                   = \frac{16}{2}=8

Similarly, xy = \frac{(\sqrt{5}+\sqrt{3)}}{(\sqrt{5}-\sqrt{3)}}\times \frac{(\sqrt{5}-\sqrt{3)}}{(\sqrt{5}+\sqrt{3)}}

                    = \frac{(5-3)}{(5-3)}=1

Now x + y + xy = 8 + 1

                        = 9

Therefore, (x + y + xy) = 9

Learn more, how to solve the fractions with complex numbers from https://brainly.in/question/8014721

                   

Similar questions