Math, asked by mlal963428, 8 months ago

If x=5-root21/2 , find x+1/x​

Answers

Answered by Blossomfairy
77

Question :

If  \sf{x = \frac{ 5 -  \sqrt{21}}{2}   } \: then \: find \: the \: value \: of \: x +  \frac{1}{x}

Answer :

Given :

  •  \sf{x = \frac{ 5 -  \sqrt{21}}{2}   }

To find :

  • \sf x +  \frac{1}{x}

According to the question,

\implies\sf{x =  \frac{5 -  \sqrt{21} }{2}  \times  \frac{2}{2}  }

\implies \sf{ \frac{2(5 -  \sqrt{21}) }{4} }

\implies \sf{ \frac{10 - 2 \sqrt{21} }{4} }

 \sf \implies{ \frac{5 -  \sqrt{21} }{2} } \green \bigstar

 \sf \implies{ \frac{1}{x}  =  \frac{2}{5 -  \sqrt{21} } \times  \frac{5 +  \sqrt{21} }{5 +  \sqrt{21} } }

\sf \implies{ \frac{2(5 +  \sqrt{21}) }{25 - 21} }

\implies \sf{ \frac{10   + 2 \sqrt{21} }{4} }

 \implies \sf{ \frac{5  +  \sqrt{21} }{2} } \green \bigstar

\therefore \sf{x +  \frac{1}{x} =  \frac{5 -  \sqrt{21} }{2}    +  \frac{5 +  \sqrt{21} }{2} }

\sf \implies { \frac{5 -   \cancel{\sqrt{21}} + 5  +  \cancel{\sqrt{21} } }{2} }

\sf \implies{ \frac{10}{2} }

\implies { \green{ \boxed{\sf{5}}}}

Similar questions