Math, asked by tssuyambulingam, 1 year ago

if x=5-root24 then find 10{x^2+1/x^2}-97{x+1/x}-10

Answers

Answered by rational
69
The key thing is to use the identity
x^2+\frac{1}{x^2}=\left(x+\frac{1}{x}\right)^2-2

In light of that, start by working the value of x+\frac{1}{x}
x=5-\sqrt{24}
\frac{1}{x}=\frac{1}{5-\sqrt{24}}=\frac{1}{5-\sqrt{24}}\times\frac{5+\sqrt{24}}{5+\sqrt{24}}=\frac{5+\sqrt{24}}{5^2-\sqrt{24}^2}=\frac{5+\sqrt{24}}{25-24}=5+\sqrt{24}

Add them and get
x+\frac{1}{x}=5-\sqrt{24}+5+\sqrt{24}=10

Use the earlier identity to find the value of x^2+\frac{1}{x^2} :
x^2+\frac{1}{x^2}=\left(x+\frac{1}{x}\right)^2-2=10^2-2=98

Plug these values in the given expression and simplify :
10\left(x^2+\frac{1}{x^2}\right)-97\left(x+\frac{1}{x}\right)-10\\=10\left(98\right)-97\left(10\right)-10\\=\boxed{0}

tssuyambulingam: you are superb
rational: haha ty :) i hope the steps are clear enough this time... just ask if something doesn't make sense... had to skip couple steps to make the solution not too lengthy..
Answered by kaushikravikant
31
If
x=5-√24
1/x=1/5-√24
on rationalize
1/x=1        × 5+√24    =5+√24  =5+√24
     5-√24      5+√24    25-25

on looking identity (x+1/x)²=x²+1/x²+2
x²+1/x²=(x+1/x)²-2
on putting value
(5-√24 +5+√24)² -2
100-2=98
According to question
10{x²+1/x²} -97{x+1/x)-10
10(98) -97(10)-10
980-970-10⇒980-980=0
Answer is o


tssuyambulingam: ok thanks
kaushikravikant: welcome
Similar questions