In triangle ABC, the bisector of interior angle at vertex B and the bisector of exterior angle at vertex A intersect each other at point P. Prove that : 2angle APB = angle C.
Answers
Answered by
6
See the diagram.
BP is the internal bisector of
. AP is the bisector of the exterior
at A.
![\angle{ABP}=\angle{PBC}=\frac{\angle{ABC}}{2},\\\angle{DAP}=\angle{PAC}=\frac{\angle{DAC}}{2}\\\\\angle{DAC}=exterior\ angle\ to\ \Delta ABC\ at\ A\\=sum\ of\ interior\ angles=\angle{ABC}+\angle{ACB}\\\\\angle{DAP}=exterior\ angle\ to\ \Delta PAB\ at\ A=\angle{APB}+\angle{ABP}\\\\ \angle{ABP}=\angle{PBC}=\frac{\angle{ABC}}{2},\\\angle{DAP}=\angle{PAC}=\frac{\angle{DAC}}{2}\\\\\angle{DAC}=exterior\ angle\ to\ \Delta ABC\ at\ A\\=sum\ of\ interior\ angles=\angle{ABC}+\angle{ACB}\\\\\angle{DAP}=exterior\ angle\ to\ \Delta PAB\ at\ A=\angle{APB}+\angle{ABP}\\\\](https://tex.z-dn.net/?f=%5Cangle%7BABP%7D%3D%5Cangle%7BPBC%7D%3D%5Cfrac%7B%5Cangle%7BABC%7D%7D%7B2%7D%2C%5C%5C%5Cangle%7BDAP%7D%3D%5Cangle%7BPAC%7D%3D%5Cfrac%7B%5Cangle%7BDAC%7D%7D%7B2%7D%5C%5C%5C%5C%5Cangle%7BDAC%7D%3Dexterior%5C+angle%5C+to%5C+%5CDelta+ABC%5C+at%5C+A%5C%5C%3Dsum%5C+of%5C+interior%5C+angles%3D%5Cangle%7BABC%7D%2B%5Cangle%7BACB%7D%5C%5C%5C%5C%5Cangle%7BDAP%7D%3Dexterior%5C+angle%5C+to%5C+%5CDelta+PAB%5C+at%5C+A%3D%5Cangle%7BAPB%7D%2B%5Cangle%7BABP%7D%5C%5C%5C%5C)
![= > \frac{1}{2}\angle{DAC}=\angle{APB}+\frac{1}{2}\angle{ABC}\\= > \frac{1}{2}( \angle{ABC}+\angle{ACB}) =\angle{APB}+\frac{1}{2} \angle{ABC}\\ = > \frac{1}{2}\angle{DAC}=\angle{APB}+\frac{1}{2}\angle{ABC}\\= > \frac{1}{2}( \angle{ABC}+\angle{ACB}) =\angle{APB}+\frac{1}{2} \angle{ABC}\\](https://tex.z-dn.net/?f=%3D+%26gt%3B+%5Cfrac%7B1%7D%7B2%7D%5Cangle%7BDAC%7D%3D%5Cangle%7BAPB%7D%2B%5Cfrac%7B1%7D%7B2%7D%5Cangle%7BABC%7D%5C%5C%3D+%26gt%3B+%5Cfrac%7B1%7D%7B2%7D%28+%5Cangle%7BABC%7D%2B%5Cangle%7BACB%7D%29+%3D%5Cangle%7BAPB%7D%2B%5Cfrac%7B1%7D%7B2%7D+%5Cangle%7BABC%7D%5C%5C)
![= >\frac{1}{2} \angle{ACB}=\angle{APB}\\\\= > \angle{C}=2*\angle{APB} = >\frac{1}{2} \angle{ACB}=\angle{APB}\\\\= > \angle{C}=2*\angle{APB}](https://tex.z-dn.net/?f=%3D+%26gt%3B%5Cfrac%7B1%7D%7B2%7D+%5Cangle%7BACB%7D%3D%5Cangle%7BAPB%7D%5C%5C%5C%5C%3D+%26gt%3B+%5Cangle%7BC%7D%3D2%2A%5Cangle%7BAPB%7D)
It is easily proved by using the exterior angle = sum of interior angles.
BP is the internal bisector of
It is easily proved by using the exterior angle = sum of interior angles.
Attachments:
![](https://hi-static.z-dn.net/files/d04/e6109689d397b4f7bb58bd6bca11103b.png)
Similar questions