Math, asked by Abdida3304, 8 months ago

If x = 6- root 35 then find the value of x + 1/x

Answers

Answered by asj71718
0

Step-by-step explanation:

Substituting value of x in x +1/x, we get,

6 +  \sqrt{35} +  \frac{1}{6 +  \sqrt{35} }

Taking LCM,

 \frac{(6 +  \sqrt{35})(6 +  \sqrt{35}) + 1  }{6 +  \sqrt{35} }

 \frac{ {(6 + \sqrt{35} ) }^{2} + 1 }{6 +  \sqrt{35} }

Expanding the equation by using idendity,

 {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}

 \frac{36 + 12 \sqrt{35} + 35 + 1 }{6 +  \sqrt{35} }

 \frac{72 + 12 \sqrt{35} }{6 +  \sqrt{35} }

Rationalising the denominator,

 \frac{72 + 12 \sqrt{35} }{6 +  \sqrt{35} }  \times  \frac{6 -  \sqrt{35} }{6 -  \sqrt{35} }

 \frac{(72 + 12 \sqrt{35} )(6 -  \sqrt{35}) }{36 - 35}

572 - 72 \sqrt{35}  + 72 \sqrt{35}  - 420

 = 152

Mark as Brainliest....

Similar questions