Math, asked by vivekkumar709172, 11 months ago

If `x=(6ab)/(a+b)` find the value of ` (x+3a)/(x-3a)+(x+3b)/(x-3b) `

Attachments:

Answers

Answered by sr1233605
5

Hi mate.

ANSWER:

Given that,

 =  > x =  \frac{6ab}{a + b}

 =  >  \frac{x + 3a}{x - 3a}  +  \frac{x + 3b}{x - 3b}

  =  > \frac{(x - 3b)  \times(x + 3a) + (x - 3a) \times ( \times  + 3b) }{(x - 3a)  \times (x - 3b) }

  \frac{ {x}^{2}  + 3ax - 3bx - 9ab +  {x}^{2}  + 3bx - 3ax - 9ab}{ {x}^{2}  - 3bx - 3ax + 9ab}

  =  >  > >  >  >  >  >  \frac{2 {x}^{2}  - 18ab}{ {x}^{2}  - 3bx - 3ax + 9ab}

I hope you are happy.

So please mark my answer as brainlist answer...

Similar questions