Math, asked by jaswanth4490, 10 months ago

If x = √7+ √3 and xy = 4, then x4 + y4 =​

Answers

Answered by MaheswariS
12

\textbf{Given:}

x=\sqrt{7}+\sqrt{3}\;\text{and}\;xy=4

\textbf{To find:}

\text{The value of $x^4+y^4$}

\text{consider,}

xy=4

y=\frac{4}{x}

\text{To rationalize the denominator}

y=\frac{4}{\sqrt{7}+\sqrt{3}}{\times}\frac{\sqrt{7}-\sqrt{3}}{\sqrt{7}-\sqrt{3}}

y=4(\frac{\sqrt{7}-\sqrt{3}}{7-3})

\implies\bf\;y=\sqrt{7}-\sqrt{3}

\text{Using the identity,}

\boxed{\bf\;a^2+b^2=(a+b)^2-2ab}

\text{we get}

x^4+y4=(x^2+y^2)^2-2x^2y^2

x^4+y4=((\sqrt{7}+\sqrt{3})^2+(\sqrt{7}-\sqrt{3})^2)^2-2(xy)^2

x^4+y4=(7+3+2\sqrt{7}\sqrt{3}+7+3-2\sqrt{7}\sqrt{3})^2-2(4)^2

x^4+y4=(20)^2-32

x^4+y4=400-32

\implies\boxed{\bf\;x^4+y4=368}

\therefore\textbf{The value of $\bf\;x^4+y^4$ is 368}

Find more:

If x^4-79x^2+1=0 then find the value of x^3+1/x^3

https://brainly.in/question/15839027

Answered by saradapudi711
0

Step-by-step explanation:

Given:

x=\sqrt{7}+\sqrt{3}\;\text{and}\;xy=4x=

7

+

3

andxy=4

\textbf{To find:}To find:

\text{The value of $x^4+y^4$}The value of x

4

+y

4

\text{consider,}consider,

xy=4xy=4

y=\frac{4}{x}y=

x

4

\text{To rationalize the denominator}To rationalize the denominator

y=\frac{4}{\sqrt{7}+\sqrt{3}}{\times}\frac{\sqrt{7}-\sqrt{3}}{\sqrt{7}-\sqrt{3}}y=

7

+

3

4

×

7

3

7

3

y=4(\frac{\sqrt{7}-\sqrt{3}}{7-3})y=4(

7−3

7

3

)

\implies\bf\;y=\sqrt{7}-\sqrt{3}⟹y=

7

3

\text{Using the identity,}Using the identity,

\boxed{\bf\;a^2+b^2=(a+b)^2-2ab}

a

2

+b

2

=(a+b)

2

−2ab

\text{we get}we get

x^4+y4=(x^2+y^2)^2-2x^2y^2x

4

+y4=(x

2

+y

2

)

2

−2x

2

y

2

x^4+y4=((\sqrt{7}+\sqrt{3})^2+(\sqrt{7}-\sqrt{3})^2)^2-2(xy)^2x

4

+y4=((

7

+

3

)

2

+(

7

3

)

2

)

2

−2(xy)

2

x^4+y4=(7+3+2\sqrt{7}\sqrt{3}+7+3-2\sqrt{7}\sqrt{3})^2-2(4)^2x

4

+y4=(7+3+2

7

3

+7+3−2

7

3

)

2

−2(4)

2

x^4+y4=(20)^2-32x

4

+y4=(20)

2

−32

x^4+y4=400-32x

4

+y4=400−32

\implies\boxed{\bf\;x^4+y4=368}⟹

x

4

+y4=368

\therefore\textbf{The value of $\bf\;x^4+y^4$ is 368}∴The value of x

4

+y

4

is 368

Similar questions