Math, asked by KARTIKSHERWAL16007, 2 months ago

if x = 7 - 4√3 find (x^2 -1)/(x^2 +1)
answer fast i will mark brainliest and irrelevent answers be ready for report

Answers

Answered by Anonymous
8

Answer:

-4√3/7

Step-by-step explanation:

As per the information provided in the question, We have :

  • x = 7 - 4√3

We are asked to find the value of (x^2 -1)/(x^2 +1).

In order to find the value of (x^2 -1)/(x^2 +1). We will substitute the value of x in it.

 \begin{gathered}\longmapsto \rm  \dfrac{ {x}^{2} - 1 }{ {x}^{2}  + 1}  \end{gathered}

Substituting the value of x.

\begin{gathered}\longmapsto \rm  \dfrac{ ({7 - 4 \sqrt{3}) }^{2} - 1 }{ {({7 - 4 \sqrt{3})}}^{2}  + 1}  \end{gathered}

\begin{gathered}\longmapsto \rm  \dfrac{ ({7 - 4 \sqrt{3}) }^{2} - 1 }{ {97 - 56 \sqrt{3}  + 1}}  \end{gathered}

\begin{gathered}\longmapsto \rm  \dfrac{ (97 - 56 \sqrt{3}  - 1 )}{ {98 - 56 \sqrt{3} }}  \end{gathered}

\begin{gathered}\longmapsto \rm  \dfrac{ 96 - 56 \sqrt{3} }{ {98 - 56 \sqrt{3} }}  \end{gathered}

\begin{gathered}\longmapsto \rm  \dfrac{ 8(12 - 7 \sqrt{3} )}{ {14(7 - 4 \sqrt{3}) }}  \end{gathered}

\begin{gathered}\longmapsto \rm   \dfrac{4}{7} \times  \dfrac{ (12 - 7 \sqrt{3} )}{ {(7 - 4 \sqrt{3}) }}  \end{gathered}

By rationalising 12-7√3/7-4√3 we get,

\begin{gathered}\longmapsto \rm   \dfrac{4}{7}   \times  \bigg(  - \dfrac{ \sqrt{3} }{1} \bigg ) \end{gathered}

\begin{gathered}\longmapsto \rm   -   \dfrac{4 \sqrt{3} }{7}  \end{gathered}

∴ The value of (x^2 -1)/(x^2 +1) is -4√3/7.

Similar questions