Math, asked by subratpande, 9 months ago

if x=7-4√3 then find √x+1/√x​

Answers

Answered by Anonymous
14

» Question :

If \sf{x = 7 - 4\sqrt{3}} then ,find the value of \sf{\sqrt{x} - \dfrac{1}{\sqrt{x}}}

» To Find :

The value of \sf{\sqrt{x} - \dfrac{1}{\sqrt{x}}}

» Given :

  • \sf{x = 7 - 4\sqrt{3}}

» We Know :

  • \sf{\left(x + \dfrac{1}{x}\right)^{2} = x^{2} +  \left(\dfrac{1}{x}\right)^{2} + 2}

  • \sf{a^{2} - b^{2} = (a + b)(a - b)}

» Concept :

According to the mathematics , if \sf{x = 7 - 4\sqrt{3}} ,then \sf{\dfrac{1}{x} = 7 + 4\sqrt{3}}

Proof :

Given :

\sf{x = 7 - 4\sqrt{3}}(Equation...(i))

Then :

\sf{\dfrac{1}{x} = \dfrac{1}{7 - 4\sqrt{3}}}

Multiplying the Equation by \sf{7 + 4\sqrt{3}} on both the numerator and denominator.

\sf{\Rightarrow \dfrac{1}{x} = \dfrac{1}{7 - 4\sqrt{3}} \times \dfrac{7 + 4\sqrt{3}}{7 + 4\sqrt{3}}}

\sf{\Rightarrow \dfrac{1}{x} = \dfrac{7 + 4\sqrt{3}}{7 - 4\sqrt{3} \times 7 + 4\sqrt{3}}}

Using the identity :

\sf{a^{2} - b^{2} = (a + b)(a - b)}

we get :

\sf{\Rightarrow \dfrac{1}{x} = \dfrac{7 + 4\sqrt{3}}{7^{2} - \bigg(4\sqrt{3}\bigg)^{2}}}

\sf{\Rightarrow \dfrac{1}{x} = \dfrac{7 + 4\sqrt{3}}{49 - 48}}

\sf{\Rightarrow \dfrac{1}{x} = \dfrac{7 + 4\sqrt{3}}{1}}

\sf{\Rightarrow \dfrac{1}{x} = 7 + 4\sqrt{3}}

\sf{\therefore \dfrac{1}{x} = 7 + 4\sqrt{3}}(Equation...(ii))

Now ,by this information we can find the required value .

» Solution :

Equation (i)

\sf{x = 7 - 4\sqrt{3}}

Equation (ii)

\sf{\therefore \dfrac{1}{x} = 7 + 4\sqrt{3}}

On adding the two Equations ,we get :

\sf{x + \dfrac{1}{x}}

\sf{\Rightarrow 7 - 4\sqrt{3} + 7 + 4\sqrt{3}}

\sf{\Rightarrow 7 - \cancel{4\sqrt{3}} + 7 + \cancel{4\sqrt{3}}}

\sf{\Rightarrow 7 + 7}

\sf{\Rightarrow 14}

Hence , \sf{x + \dfrac{1}{x} = 14}

Given Equation to find :

\sf{\sqrt{x} - \dfrac{1}{\sqrt{x}}}

Squaring the equation,we get :

\sf{\bigg(\sqrt{x} - \dfrac{1}{\sqrt{x}}\bigg)^{2}}

\sf{\Rightarrow \bigg(\sqrt{x} - \dfrac{1}{\sqrt{x}}\bigg)^{2} = x + \dfrac{1}{x} + 2}

Putting the value of \sf{x + \dfrac{1}{x} = 14} ,in the Equation ,we get :

\sf{\Rightarrow \bigg(\sqrt{x} - \dfrac{1}{\sqrt{x}}\bigg)^{2} = 14 + 2}

\sf{\Rightarrow \bigg(\sqrt{x} - \dfrac{1}{\sqrt{x}}\bigg)^{2} = 16}

On Square rooting on both the sides ,we get ;

\sf{\Rightarrow \sqrt{\bigg(\sqrt{x} - \dfrac{1}{\sqrt{x}}\bigg)^{2}} = \sqrt{16}}

\sf{\Rightarrow \bigg(\sqrt{x} - \dfrac{1}{\sqrt{x}}\bigg) = 4}

Hence ,the value of \sf{\sqrt{x} - \dfrac{1}{\sqrt{x}}} is 4.

» Additional information :

  • (a² + b²) = (a + b)² - 2ab

  • (a² + b²) = (a - b)² + 2ab

  • (a + b)² = a² + b² + ab

  • a³ + b³ = (a + b)(a² - 2ab + b²)

  • a³ - b³ = (a - b)(a² + 2ab + b²)
Answered by BrainlyHera
5

Given :

 \rightarrow \mathtt{x = 7 - 4 \sqrt{3} }

To find :

 \rightarrow \mathtt{ \sqrt{x}  +  \dfrac{1}{ \sqrt{x} } }

Solution :

As per the given question ,

\rightarrow \mathtt{x = 7 - 4 \sqrt{3} }

This equation can also be written as ,

\rightarrow \mathtt{x = 4 + 3 - 4 \sqrt{3} }

\rightarrow \mathtt{x =  {(2)}^{2} - 2 \times 2 \sqrt{3}   +  {( \sqrt{3}) }^{2} }

we know that ,

\star  \boxed{\mathtt{  {(a - b)}^{2}  =  {a}^{2}  - 2ab +  {b}^{2} }}

Hence ,

\rightarrow \mathtt{x =  {(2 -  \sqrt{3}) }^{2} }

\rightarrow \mathtt{ \sqrt{x}  =  \sqrt{( {2 -  \sqrt{3} )}^{2} }  }

\rightarrow \mathtt{ \pink{ \sqrt{x}  = 2 -  \sqrt{3} }}

_________________________

\rightarrow \mathtt{ \sqrt{x}  +  \dfrac{1}{ \sqrt{x} } }

Substituting the value of √ x in the above equation we get ,

\mathtt{  = 2 -  \sqrt{3}  +  \dfrac{1}{2 -  \sqrt{3} } }

\mathtt{  =  \dfrac {{(2 -  \sqrt{3} )}^{2}  + 1}{2 -  \sqrt{3} }}

\mathtt{  =  \dfrac {7 - 4 \sqrt{3}   + 1}{2 -  \sqrt{3} }}

\mathtt{  =  \dfrac {8- 4 \sqrt{3}   }{2 -  \sqrt{3} }}

\mathtt{  =  \dfrac {4 \cancel{(2-  \sqrt{3}  )} }{ \cancel{2 -  \sqrt{3}} }}

hence ,

 \rightarrow \mathtt{ \red{ \sqrt{x}  +  \dfrac{1}{ \sqrt{x} }  = 4}}

_________________________

Hope this helps :D

Similar questions