Math, asked by santhoshvarma7072, 1 year ago

If x=7-4√3 then the value of (x+1/x)

Answers

Answered by Anonymous
13

x \:  =  \: 7 \:  -  \: 4 \sqrt{3}

___________ [ GIVEN ]

• We have to find the value of x \:   +  \:  \dfrac{1}{x}

______________________________

We have ..

=> x \:  =  \: 7 \:  -  \: 4 \sqrt{3}

Now,

=> \dfrac{1}{x}  \:  =  \:  \dfrac{1}{7 \:  -  \: 4 \sqrt{3} }

Rationalize it

=> \dfrac{1}{x}  \:  =  \:  \dfrac{1}{7 \:  -  \: 4 \sqrt{3} }  \:  \times  \:  \dfrac{7 \:  +  \: 4 \sqrt{3} }{7 \:  +  \: 4 \sqrt{3} }

=> \dfrac{1}{x}  \:  =  \:  \dfrac{7 \:  +  \: 4 \sqrt{3} }{(7 \:  +  \: 4 \sqrt{3} )(7 \:   -   \: 4 \sqrt{3} )}

(a + b) (a - b) = a² - b²

=> \dfrac{1}{x}  \:  =  \:  \dfrac{7 \:  +  \: 4 \sqrt{3} }{(7 )^{2} \:   -   \: (4 \sqrt{3} ) ^{2} }

=> \dfrac{1}{x}  \:  =  \:  \dfrac{7 \:  +  \: 4 \sqrt{3} }{49\:   -   \: 48 }

=> \dfrac{1}{x}  \:  =  \:  \dfrac{7 \:  +  \: 4 \sqrt{3} }{ 1 }

=> \dfrac{1}{x}  \:  =\:7 \:  +  \: 4 \sqrt{3}

______________________________

x \:   +  \:  \dfrac{1}{x}

Put the known values above

=> 7 \:  -  \: 4 \sqrt{3} + 7 \:  +  \: 4 \sqrt{3}

=> 14

______________________________

x \:   +  \:  \dfrac{1}{x} = 14

_______________ [ ANSWER ]

______________________________

Similar questions