Math, asked by sethjanvi012, 22 hours ago

If x = 7 + 4 √3 , then x + 1/x is equal to
10
12
14
16​

Answers

Answered by Anonymous
37

\large\bold{\underline{\underline{Given:-}}}

x = 7 + 4 \sqrt{3}

\large\bold{\underline{\underline{To\:find:-}}}

x +  \frac{1}{x}  \\

\large\bold{\underline{\underline{Solution:-}}}

\boxed{ (c) \:14  }

\large\bold{\underline{\underline{Step-by-step\:explanation:-}}}

Let us first solve for  \frac{1}{x}  .

We have,

 :⟼  \frac{1}{7 + 4 \sqrt{3} }  \\

:⟼   \frac{1}{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }  \\

:⟼   \frac{1(7 - 4 \sqrt{3}) }{ ({7})^{2}  - ( {4 \sqrt{3} })^{2} }  \\

:⟼   \frac{7 - 4 \sqrt{3} }{49 - 48}  \\

:⟼   \frac{7 - 4 \sqrt{3} }{1}  \\

:⟼  7 - 4 \sqrt{3}

Now,

:⟼  x +  \frac{1}{x}  \\

:⟼  7 + 4 \sqrt{3}  + 7 - 4 \sqrt{3}

:⟼  7 + 7

:⟼  14

Note:

↬(a + b)(a - b) =  {a}^{2}  -  {b}^{2}

\sf\red{Hope\:it\:helps.}

Similar questions