Math, asked by vamsithv4321, 1 year ago

If x=7+4√3then find x power 2 - 1/x power 2

Answers

Answered by Anonymous
3

Given:-

x = 7 + 4 \sqrt{3}

To find :-

 {x}^{2}  -  \dfrac{1}{ {x}^{2} }

Solution:-

If x = 7 + 4√3

then

 \dfrac{1}{x}  =  \dfrac{1}{7 + 4 \sqrt{3} }

 \dfrac{1}{x}  =  \dfrac{1}{7 + 4 \sqrt{3} } \times  \dfrac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }

 \dfrac{1}{x}  =  \dfrac{ 7  -  4 \sqrt{3}  }{ {(7)}^{2}  -  {(4 \sqrt{3} )}^{2} }

 \dfrac{1}{x}  =  \dfrac{7  - 4 \sqrt{3} }{49 - 48}

 \dfrac{1}{x}  =  \dfrac{7  -  4 \sqrt{3} }{1}

Now, we have to find,

 {x}^{2}  -  \dfrac{1}{ {x}^{2} }

It can also be written as :-

(x +  \dfrac{1}{x} ) (x -  \dfrac{1}{x})

Now, put the value of x and 1/x,

 = (7 + 4 \sqrt{3}  + 7 - 4 \sqrt{3} )(7 + 4 \sqrt{3}  - 7 + 4 \sqrt{3} )

 = (14)(2 \times 4 \sqrt{3} )

 = 14 \times 8 \sqrt{3}

 = 112 \sqrt{3}

hence, the required answer is 112√3.

Similar questions