Math, asked by siddhanth200416, 1 year ago

if x=7+4 root 3 find the value of (x³+1/x³).​

Answers

Answered by emmagranjel
5

Answer:

x= 11³

x= 537+1/11

x = 538/11

x= 48

Answered by Anonymous
20

x \:   =  \: 7 \:  +  \: 4 \sqrt{3}

________ [GIVEN]

{x}^{3}  \:  +  \:   \dfrac{1}{ {x}^{3} }

________ [TO FIND]

Solution:

=> x = 7 + 4√3 _________(eq 1)

=> \dfrac{1}{x} = \dfrac{1}{  7 \:  +  \: 4 \sqrt{3} }

• Rationalize

=> \dfrac{1}{x} = \dfrac{1}{  7 \:  +  \: 4 \sqrt{3} } × \dfrac{7 \:  -  \: 4 \sqrt{3} }{  7 \:   -  \: 4 \sqrt{3} }

=> \dfrac{7 \:  -  \: 4 \sqrt{3} }{ ( {7)}^{2}  \:  -  {(4 \sqrt{3}) }^{2}  }

=> \dfrac{7 \: -  \:  4 \sqrt{3} }{49 \:  -  \: 48}

=> \dfrac{7 \: -  \:  4 \sqrt{3} }{1}

=> 7 - 4√3 ________(eq 2)

_____________________________

Now we know the value of x + \dfrac{1}{x}

=> x + \dfrac{1}{x} = 7 + 4√3 + 7 - 4√3

=> x + \dfrac{1}{x} = 14

• Now take cube on both sides

=> {(x \:   +  \:   \dfrac{1}{x})}^{3} = (14)³

(a + b)³ = a³ + 3ab(a + b) + b³

=> x³ + \dfrac{1}{ {x}^{3} } + 3( \dfrac{x}{x})(x + \dfrac{1}{x}) = 2744

=> x³ + \dfrac{1}{ {x}^{3} } + 3(14) = 2744

=> x³ + \dfrac{1}{ {x}^{3} } = 2744 - 42

______________________________

{x}^{3}  \:  +  \:   \dfrac{1}{ {x}^{3} } = 2702

_____________ [ANSWER]

Similar questions