If x = 7 + 7√40 , find the value of √x+
1
√x
Answers
Answered by
1
Answer:
Given x = 7+√40
=> x = 7+√2×2×10
=> x = 7+2√10
=> x = 7+2×√5×√2
=> x = 5+2+2×√5×√2
=> x = (√5)²+(√2)²+2×√5×√2
=> x = (√5+√2)²
=> √x = √5+√2 ----(1)
Now ,
ii)\frac{1}{\sqrt{x}}
= \frac{1}{\sqrt{5}+\sqrt{2}}
/* Rationalising the denominator, we get
=\frac{\sqrt{5}-\sqrt{2}}{(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})}
=\frac{\sqrt{5}-\sqrt{2}}{(\sqrt{5})^{2}-(\sqrt{2})^{2}}
=\frac{\sqrt{5}-\sqrt{2}}{5-2}
=\frac{\sqrt{5}-\sqrt{2}}{3} ----(2)
iii) \sqrt{x}+\frac{1}{\sqrt{x}}
=\sqrt{5}+\sqrt{2}+\frac{\sqrt{5}-\sqrt{2}}{3}
=\frac{3(\sqrt{5}+\sqrt{2})+\sqrt{5}-\sqrt{2}}{3}
=\frac{3\sqrt{5}+3\sqrt{2}+\sqrt{5}-\sqrt{2}}{3}
=\frac{4\sqrt{5}+2\sqrt{2}}{3}
Therefore,
\sqrt{x}+\frac{1}{\sqrt{x}}=\frac{4\sqrt{5}+2\sqrt{2}}{3}
•••♪
Similar questions