Math, asked by sunayana1, 1 year ago

If x=7+root 40 find, rootx +root 1/x

Answers

Answered by poojan
39
x=7+√10
x = 7+√4×10
x = 7+2√10
then,
√x + (√1/x) = √(7+2√10) + (√1/(7+2√10))
   = √(7+2√10) + (1/(7+2√10))            LCM
  =  [√(7+2√10)][√(7+2√10)] +1 / √(7+2√10)
   = 7+2√10+1/ √(7+2√10)
  =  8+2√10 /√(7+2√10)
Answered by wifilethbridge
2

Answer:

\sqrt{x}+\sqrt{\frac{1}{x}}=\frac{8+2\sqrt{10}}{\sqrt{7+2\sqrt{10}}}

Step-by-step explanation:

Given : x= 7+\sqrt{40}

To Find : \sqrt{x}+\sqrt{\frac{1}{x}}

Solution :

x= 7+\sqrt{40}

x= 7+\sqrt{2 \times 2 \times 10}

x= 7+2\sqrt{10}

\sqrt{x}+\sqrt{\frac{1}{x}}

=\sqrt{ 7+2\sqrt{10}}+\sqrt{\frac{1}{ 7+2\sqrt{10}}}

=\frac{7+2\sqrt{10}+1}{\sqrt{7+2\sqrt{10}}}

=\frac{8+2\sqrt{10}}{\sqrt{7+2\sqrt{10}}}

Hence \sqrt{x}+\sqrt{\frac{1}{x}}=\frac{8+2\sqrt{10}}{\sqrt{7+2\sqrt{10}}}

Similar questions