Math, asked by lakshmi7822, 1 year ago

if x=7+ root 48,find the value of root x +1/root x ​

Answers

Answered by amaanpeerzade82
7

Answer:

Step-by-step explanation:

x=7+√40

x=7+2√10

 =(√5)²+(√2)²+2×√2×√5

 =(√5+√2)²

√x=√5+√2

1/√x=1/√5+√2

     =√5-√2/3

√x+1/√x=√5+√2 + √5-√2/3

           =4√5+2√2/3

           ie 2/3( 2√5+√2)

hope this is helpful

Answered by pinquancaro
10

The value is \sqrt{x}+\frac{1}{\sqrt{x}}=4.

Step-by-step explanation:

Given : If x=7+\sqrt{48}

To find : The value of \sqrt{x}+\frac{1}{\sqrt{x}} ?

Solution :

x=7+\sqrt{48}

Write it as,

x=7+4\sqrt{3}

x=(2)^2+2\times 2\times \sqrt{3}+(\sqrt{3})^2

x=(2+\sqrt{3})^2

Now taking root both side,

\sqrt{x}=\sqrt{(2+\sqrt{3})^2}

\sqrt{x}=2+\sqrt{3} .....(1)

Now,

\frac{1}{\sqrt{x}}=\frac{1}{2+\sqrt3}

Rationalize the denominator,

\frac{1}{\sqrt{x}}=\frac{1}{2+\sqrt3}\times \frac{2-\sqrt3}{2-\sqrt3}

\frac{1}{\sqrt{x}}=\frac{2-\sqrt3}{2^2-(\sqrt3)^2}

\frac{1}{\sqrt{x}}=\frac{2-\sqrt3}{4-3}

\frac{1}{\sqrt{x}}=2-\sqrt3   ....(2)

Add (1) and (2),

\sqrt{x}+\frac{1}{\sqrt{x}}=2+\sqrt3+2-\sqrt3

\sqrt{x}+\frac{1}{\sqrt{x}}=4

Therefore, the value is \sqrt{x}+\frac{1}{\sqrt{x}}=4

#Learn more

If x=7+root 40 find the value of root x +1/root x

https://brainly.in/question/4454062

Similar questions