Math, asked by LasterWolfyt, 4 months ago

If (x + 8)⁰ and (2x - 5)⁰ are adjacent angles and forming a linear pair, then the value of x is​

Answers

Answered by Sen0rita
22

Given : (x + 8)° and (2x - 5)° are the adjacent angles forming a linear pair.

To Find : Value of x

⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀__________________

As we know that :

  • Sum of adjacent angles is 180°.

So,

(x + 8)° + (2x - 5)° = 180°

 \:  \:

Now,

 \:

\tt:\implies \: (x + 8)\degree \:  + (2x - 5)\degree = 180\degree \\  \\  \\ \tt:\implies \: x + 8 + 2x - 5 = 180 \\  \\  \\ \tt:\implies \: x + 2x + 8 - 5 = 180 \\  \\  \\ \tt:\implies \: 3x + 3 = 180 \\  \\  \\ \tt:\implies \: 3x = 180 - 3 \\  \\  \\ \tt:\implies \: 3x = 177 \\  \\  \\ \tt:\implies \: x = \cancel \frac{117}{3}  \\  \\  \\ \tt:\implies \: x = \underline{\boxed{\sf\purple{59}}}\bigstar \\  \\  \\ \\ \sf\therefore{\underline{Hence, \: the \: value \: of \: x \: is \: \bold{59}.}}

Answered by BlackAura
39

\sf{\underline{\underline{\large{Question}}}}

If (x + 8)⁰ and (2x - 5)⁰ are adjacent angles and forming a linear pair, then the value of x is

{\sf{\large{\underline{\underline{Given}}}}}

  • adjacent angles
  • angles - (x + 8)⁰ and (2x - 5)⁰

{\sf{\large{\underline{\underline{to \: find}}}}}

  • value of x

{\sf{\large{\underline{\underline{solution}}}}}

 \sf { \underline\color{green}{We  \: Know \:  That } }\\    \sf  \to\color{blue}{sum \: of \: adjacent \: angle \: is \: 180 \degree}

So,

 \sf{\implies(x + 8)⁰ + (2x - 5)⁰ = 180 \degree} \\  \\  \sf{ \implies3x + 3 = 180 \degree} \\  \\  \sf{ \implies \: 3x = 177} \\  \\  \sf{ \implies \: x =  \frac{177}{3} } \\  \\  \sf{ \implies \: x = 59 \degree}

So the value of x is 59°.

_____________________

Similar questions