Math, asked by sreeramsree842, 7 months ago

If x=8 find the value of the polynomial p(x)=xsquire+x-5​

Answers

Answered by mudhirajharika25
0

Answer:

67

Step-by-step explanation:

Answered by asajaysingh12890
1

Answer:

Find the values of p and q so that x

4

+x

3

+8x

2

−px+q is divisible by x

2

+1.

Study later

View solution

Step-by-step explanation:

If α

If α1

If α1

If α1 ,α

If α1 ,α2

If α1 ,α2

If α1 ,α2 , α

If α1 ,α2 , α3

If α1 ,α2 , α3

If α1 ,α2 , α3 ,⋯ α

If α1 ,α2 , α3 ,⋯ αn

If α1 ,α2 , α3 ,⋯ αn

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−β

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β2

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β2

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β2 , β

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β2 , β3

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β2 , β3

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β2 , β3 , β

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β2 , β3 , βn

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β2 , β3 , βn

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β2 , β3 , βn as the roots is (x−α

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β2 , β3 , βn as the roots is (x−α1

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β2 , β3 , βn as the roots is (x−α1

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β2 , β3 , βn as the roots is (x−α1 )(x−α

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β2 , β3 , βn as the roots is (x−α1 )(x−α2

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β2 , β3 , βn as the roots is (x−α1 )(x−α2

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β2 , β3 , βn as the roots is (x−α1 )(x−α2 )………(x−α

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β2 , β3 , βn as the roots is (x−α1 )(x−α2 )………(x−αn

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β2 , β3 , βn as the roots is (x−α1 )(x−α2 )………(x−αn

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β2 , β3 , βn as the roots is (x−α1 )(x−α2 )………(x−αn )=k, then k=

If α1 ,α2 , α3 ,⋯ αn are the roots of the equation (x−β1 )(x−β2 )⋯…(x−βn )=A and if the equation having β1 , β2 , β3 , βn as the roots is (x−α1 )(x−α2 )………(x−αn )=k, then k=Study later

View solution

Similar questions