English, asked by Anonymous, 9 months ago

if x=9+4√5 and y=1/x, find x+ y, x- y, x²- y² and (x+y)²




give me answer plz fast it's urgent ​

Answers

Answered by asj71718
2

 \frac{1}{x}  =  \frac{1}{9 + 4 \sqrt{5} }  \\  \\  =  >  \frac{1}{9 + 4 \sqrt{5} }  \times  \frac{9 - 4 \sqrt{5} }{9 - 4 \sqrt{5} }

By rationalising the denominator,

 =  >  \frac{1 \times (9 - 4 \sqrt{5} )}{ {9}^{2} -  {(4 \sqrt{5} )}^{2}   }  \\  \\  =  >  \frac{9 - 4 \sqrt{5} }{81 - 80}  = 9 - 4 \sqrt{5}  = y

Therefore, By substituting the values,

x + y =( 9 + 4 \sqrt{5})  + (9 - 4 \sqrt{5} )  = 18

x - y = (9 + 4 \sqrt{5} ) - (9 - 4 \sqrt{5} ) \\ \\   =  > 9 + 4 \sqrt{5} - 9 + 4 \sqrt{5}   = 8 \sqrt{5}

 {x}^{2}   -   {y}^{2}  =  ({9 + 4 \sqrt{5}) }^{2}  -  {(9 - 4 \sqrt{5}) }^{2}  \\  \\  =  > (81 + 80) - (81 - 80)  \\  \\  = >  81 + 80 - 81 + 80 = 160

(x + y)^{2}  =  {18}^{2}  = 324 \:  \:  \:  \:  \:  \:  \: (we \: already \: found \: (x + y) = 18

Mark as Brainliest.....

Similar questions