Math, asked by dhruthi33, 9 months ago

if x 9+4√5, find the value of x square +1/x square​

Answers

Answered by Sudhir1188
2

ANSWER:

  • Value of x² +1/x² is 322.

GIVEN:

  • x = 9+4√5

TO FIND :

  • Value of x²+ 1/x²

SOLUTION:

=> x = 9+4√5

Finding 1/x:

 \implies \:  \dfrac{1}{x}  =  \dfrac{1}{9 + 4 \sqrt{5} }  \\  \\  \implies \:  \dfrac{1}{x}  =  \dfrac{1}{9 + 4 \sqrt{5} }  \times  \dfrac{9 - 4 \sqrt{5} }{9 - 4 \sqrt{5} }  \\  \\  \implies \:  \dfrac{1}{x}  =  \dfrac{9 - 4 \sqrt{5} }{81 - 80}  \\  \\  \implies \:  \dfrac{1}{x}  = 9 - 4 \sqrt{5}

Value of 1/x = 9-4√5

=> x²+ 1/x² = (9+4√5)²+(9-4√5)²

=> x² +1/x² = 81+80+72√5+81+80-72√5

=> x²+ 1/x² = 322.

NOTE:

Some important formulas:

(a+b)² = a²+b²+2ab

(a-b)² = a²+b²-2ab

(a+b)(a-b) = a²-b²

(a+b)³ = a³+b³+3ab(a+b)

(a-b)³ = a³-b³-3ab(a-b)

a³+b³ = (a+b)(a²+b²-ab)

a³-b³ = (a-b)(a²+b²+ab)

(a+b)² = (a-b)²+4ab

(a-b)² = (a+b)²-4ab

Similar questions