Math, asked by rama1983saha, 10 months ago

If x = 9+4√5 then x = √x - 1/√x

Answers

Answered by BrainlyPopularman
18

Question :

If x = 9+4√5 then √x - 1/√x = ?

ANSWER :

GIVEN :

x = 9 + 4√5

TO FIND :

√x - 1/√x = ?

SOLUTION :

First we have to find 1/x

 \\ \implies { \bold{ \dfrac{1}{ x }  =  \dfrac{1}{9 + 4 \sqrt{5} } }} \\

• Now rationalization –

 \\ \implies { \bold{ \dfrac{1}{ x }  =  \dfrac{1}{9 + 4 \sqrt{5} } \times  \dfrac{9 - 4 \sqrt{5} }{9 - 4 \sqrt{5} }  }} \\

 \\ \implies { \bold{ \dfrac{1}{ x }  =   \dfrac{9 - 4 \sqrt{5} }{(9 - 4 \sqrt{5})(9 + 4 \sqrt{5})} }} \\

 \\ \implies { \bold{ \dfrac{1}{ x }  =   \dfrac{9 - 4 \sqrt{5} }{(9) {}^{2}  - (4 \sqrt{5}) {}^{2}} \:  \:  \:  \:  [ \because(a + b)(a - b) =  {a}^{2} -  {b}^{2}  ]}} \\

 \\ \implies { \bold{ \dfrac{1}{ x }  =   \dfrac{9 - 4 \sqrt{5} }{81 - 80} }} \\

 \\ \implies { \bold{ \dfrac{1}{ x }  =   {9 - 4 \sqrt{5}} }} \\

• Now let's find –

 \\  { \bold{  =  \sqrt{x}  -  \dfrac{1}{ \sqrt{x} }  }} \\

• We should write this as –

 \\  { \bold{  = \sqrt{ ( \sqrt{x}  -  \dfrac{1}{ \sqrt{x} })  {}^{2}  }}} \\

 \\  { \bold{  = \sqrt{ x  +   \dfrac{1}{x} -   2( \sqrt{x}   )( \dfrac{1}{ \sqrt{x} }) }}} \\

 \\  { \bold{  = \sqrt{ 9 + 4 \sqrt{5}   +   9 - 4 \sqrt{5}  -   2 }}} \\

 \\  { \bold{  = \sqrt{ 18 -   2 }}} \\

 \\  { \bold{  = \sqrt{ 16 }}} \\

 \\  { \bold{  = \pm \:  4 }} \\

Hence ,   \:  \:  \:  \large  { \boxed{ \bold{    \sqrt{x}  -  \dfrac{1}{ \sqrt{x} } =  \pm \: 4  }}} \\

Similar questions