Math, asked by Anonymous, 1 month ago

if x=9 +4root 5then find the value of x +1/x.

plz answer now​

Answers

Answered by Anonymous
7

Given

 \tt \to \: x = 9 + 4 \sqrt{5}

To Find Value of

 \tt \to \: x +  \dfrac{1}{x}

If

\tt \to \: x = 9 + 4 \sqrt{5}

Then

 \tt \to \:  \dfrac{1}{x}  =  \dfrac{1}{9 + 4 \sqrt{5} }

Now Rationalize the Denominator

 \tt \to \:  \dfrac{1}{x}  =  \dfrac{1}{9 + 4 \sqrt{5} }  \times  \dfrac{9 - 4 \sqrt{5} }{9 - 4 \sqrt{5} }

Using this identity

 \tt \to(a + b)(a - b) =  {a}^{2}  -  {b}^{2}

we get

 \tt \to \:  \dfrac{1}{x}  =  \dfrac{9 - 4 \sqrt{5} }{(9) {}^{2} - (4 \sqrt{5})  }

 \tt \to \:  \dfrac{1}{x}  =  \dfrac{9 - 4 \sqrt{5} }{81 - 16 \times 5}

\tt \to \:  \dfrac{1}{x}  =  \dfrac{9 - 4 \sqrt{5} }{81 - 80}  = 9 - 4 \sqrt{5}

Now we have to find

 \tt \to \: x +  \dfrac{1}{x}

Put the value

 \tt \to \: 9 + 4 \sqrt{5}  + 9 - 4 \sqrt{5}

 \tt \to \: 9 + 9 = 18

Answer

\tt \to \: x +  \dfrac{1}{x}  = 18

Answered by OtakuSama
30

\dag{\underline{\sf{\pmb{Given: - }}}}

\\\sf{\rightarrow{x = 9 + 4 \sqrt{5}}}  \\

\\\dag{\underline{\sf{\pmb{To \: Find: - }}}}

\\\sf{\rightarrow{Value \:  of \: \bold{x}}}\\

\\\dag{\underline{\sf{\pmb{Solution}}}}

 \\ \sf{\dfrac{1}{x} =  \dfrac{1}{9 + 4 \sqrt{5}}}

 \\ \sf{\implies{\dfrac{1}{x} =  \dfrac{1}{9 + 4 \sqrt{5} }  \times  \dfrac{9  -  4 \sqrt{5} }{9 - 4 \sqrt{5}}}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{\sf{Rationalizing   \: the \:  Denominator}}

 \\ \sf{\implies{ \dfrac{1}{x}  =  \dfrac{9 - 4 \sqrt{5} }{(9) {}^{2} -  {(4 \sqrt{5}) }^{2}}}} \:  \:  \:  \:  \:  \:  \:  \: \boxed{\sf{\because{(a + b)(a - b) =  {a}^{2}  -  {b}^{2}}}}

 \\ \sf{\implies{ \dfrac{1}{x}  =  \dfrac{9 - 4 \sqrt{5} }{81 -  16 \times 5}}}

 \\ \sf{\implies{ \dfrac{1}{x}  =  \dfrac{9 - 4 \sqrt{5} }{81 -  80}}}

 \\\\ \sf{\implies{ \dfrac{1}{x}  =  \dfrac{9 - 4 \sqrt{5} }{1}}}

 \\\sf{\implies{ \dfrac{1}{x}  =  \bold{9 -  4\sqrt{5}}}} \\  \\

Now, our given equation is :-

 \\ \sf{\bold{x +  \dfrac{1}{x}}}

Putting the values:-

 \\ \sf{9 + 4 \sqrt{5}  + 9 - 4 \sqrt{5}}

 \\ \sf{\implies{9 + \cancel{4 \sqrt{5}} + 9 - \cancel{4  \sqrt{5}}}}

 \\ \sf{\implies{\bold{\red{18}}}} \\  \\

 \\ \underline{\boxed{\rm{Hence, the \: value \: of \: \bold{x  +  \dfrac{1}{x}} \: is \; \bold{18}}}}

Similar questions