Math, asked by shilpimehrotra85, 1 month ago

If x = 9- 4root5, find the value of

a) rootx + 1/ rootx
b) x^2 + 1/x^2

Pls. do answer its important ​

Answers

Answered by DaiwikPatel130806
1

Step-by-step explanation:

(i)x = 9-4\sqrt{5}

9-4\sqrt{5} =4+5-2*2*\sqrt{5} \\(2)^{2} -2(2)(\sqrt{5} )+(\sqrt{5} )^{2} \\=(2-\sqrt{5} )^{2}

Therefore x = (2-\sqrt{5} )^{2}

So, √x will be 2-\sqrt{5}

1/√x = \frac{1}{2-\sqrt{5} } *\frac{2+\sqrt{5} }{2+\sqrt{5} }

=\frac{2+\sqrt{5} }{(2)^{2} -(\sqrt{5} )^{2} }

=\frac{2+\sqrt{5} }{4-5}

=\frac{2+\sqrt{5} }{-1}

= -2-√5

\sqrt{x} +\frac{1}{\sqrt{x} } = 2-\sqrt{5} +(-2-\sqrt{5} )

=  2-2-\sqrt{5} -\sqrt{5}

= -2\sqrt{5}

(ii) x^{2} = (9-4\sqrt{5} )^{2}

= 81-2*9*4\sqrt{5} +80

= 161 - 72√5

\frac{1}{x^{2} } =\frac{1}{161-72\sqrt{5} } *\frac{161+72\sqrt{5} }{161+72\sqrt{5} }

= \frac{161+72\sqrt{5} }{25921-25920}

= 161+72√5

Therefore , x^{2} +\frac{1}{x^{2} } = 161-72\sqrt{5} +161+72\sqrt{5}

=322

Hence, (i) Answer = -2√5

            (ii) Answer = 322

Hope this will help you!!!

Please mark me as a Brainliest if this helps.

Similar questions