if x=9-4root5 , find the value of x square + 1/x square
Answers
Answered by
278
We rationalize the value of 1/x and then square it before adding. if equations do not display properly, try REFRESHing the browser.
[tex] x = 9 - 4 \sqrt{5} \\ \\ 1/x = \frac{1}{9-4\sqrt{5}} = \frac{9+4\sqrt{5}}{(9+4\sqrt{5})(9-4\sqrt{5})} \\ \\ \frac{9+4\sqrt{5}}{9^2 - (4\sqrt{5})^2} \\ \\ \frac{9+4\sqrt{5}}{81 - 80} \\ \\ 9 + 4 \sqrt{5} \\ [/tex]
[tex] x = 9 - 4 \sqrt{5} \\ \\ 1/x = \frac{1}{9-4\sqrt{5}} = \frac{9+4\sqrt{5}}{(9+4\sqrt{5})(9-4\sqrt{5})} \\ \\ \frac{9+4\sqrt{5}}{9^2 - (4\sqrt{5})^2} \\ \\ \frac{9+4\sqrt{5}}{81 - 80} \\ \\ 9 + 4 \sqrt{5} \\ [/tex]
Answered by
3
Answer : 322 ..
Hope this helps You...
Attachments:
Similar questions
History,
8 months ago
Science,
8 months ago
Social Sciences,
8 months ago
Biology,
1 year ago
Social Sciences,
1 year ago
Hindi,
1 year ago