Math, asked by Risha2003, 1 year ago

If x=√a+2b+√a-2b / √a+2b-√a-2b , then show that bx^2-ax+b=0

Answers

Answered by Lipimishra2
117
Answer in attachment. Hope it helped.
Attachments:

Risha2003: Yess..thank u sooo muccch
Answered by BrainlyQueen01
332

Answer :


Step-by-step explanation :


Given that ;


x = \frac{\sqrt{a + 2b} + \sqrt{a - 2b}}{\sqrt{a + 2b} -\sqrt{a - 2b}}


On rationalising it's denominator, we get ;


\frac{\sqrt{a + 2b} + \sqrt{a - 2b}}{ \sqrt{a + 2b} -\sqrt{a - 2b}}\\ \\ \frac{\sqrt{a + 2b} + \sqrt{a - 2b}}{ \sqrt{a + 2b} -\sqrt{a - 2b}} * \frac{\sqrt{a + 2b} +\sqrt{a - 2b}} {\sqrt{a + 2b} + \sqrt{a - 2b} } \\\\\frac{(\sqrt{a + 2b} + \sqrt{a - 2b})^2 }{(\sqrt{a + 2b}) ^2-(\sqrt{a + 2b}) ^2}\\\\ \frac{(\sqrt{a + 2b}) ^2+ ( \sqrt{a -2b}) ^2+2( \sqrt{a + 2b} )( \sqrt{a -2b} )}{a +2b - a + 2b} \\\\ \frac{a + 2b + a - 2b + 2( \sqrt{a + 2b})( \sqrt{a -2b} )}{4b}


\frac{2a + 2 ( \sqrt{a + 2b})( \sqrt{a - 2b})}{4b}


Now, taking 2 as common ;


x = \frac{\cancel{2}( a + ( \sqrt{a + 2b}) ( \sqrt{a - 2b}) }{\cancel{4}b}\\\\ x = \frac{a+ ( \sqrt{a + 2b}) ( \sqrt{a - 2b})}{2b}


On cross multiplying ;


2bx = a+ ( \sqrt{a + 2b}) ( \sqrt{a - 2b})\\\\ 2bx - a = ( \sqrt{a + 2b}) ( \sqrt{a - 2b})


On squaring both sides ;


(2bx - a)^{2} =( \sqrt{a + 2b}) ( \sqrt{a -2b})^{2}


⇒ 4b²x² + a² - 4bxa = ( a + 2b )( a - 2b )


⇒ 4b²x² + a² - 4bxa = a² - 4b²


⇒ 4b²x² + a² - 4bxa - a² + 4b² = 0


⇒ 4b²x² -  4xa + 4b² = 0


⇒ 4b ( bx² - xa + b ) = 0


⇒ bx² - ax + b = 0


                     Hence Proved.

Similar questions