If x = √(a+2b)+√(a-2b)/√(a+2b)-√(a-... then prove that bx^2 - ax + b=0.
Answers
Answered by
165
x ={ √ ( a + 2b) + √( a -2b)} /{ √( a+2b)-√(a-2b) }
take componendo and devedendo rule
(x +1)/( x -1) = {√(a +2b) +√(a -2b)+√(a +2b)-√(a -2b)}/{ √(a +2b) +√(a -2b)-√(a +2b) +√( a -2b)}
(x +1)/(x -1) = √(a +2b)/√(a -2b)
take square both sides
(x +1)²/(x -1)² = (a +2b)/(a -2b)
(a -2b)(x +1)² = (a +2b)(x -1)²
(a -2b)x² +2(a -2b)x +(a -2b) = (a +2b)x²-2(a +2b)x +( a +2b)
( a +2b -a +2b)x² -2x(a +2b+a-2b)x +( a+2b-a +2b)
4bx² -4ax + 4b = 0
bx² -ax + b =0
hence proved ////
take componendo and devedendo rule
(x +1)/( x -1) = {√(a +2b) +√(a -2b)+√(a +2b)-√(a -2b)}/{ √(a +2b) +√(a -2b)-√(a +2b) +√( a -2b)}
(x +1)/(x -1) = √(a +2b)/√(a -2b)
take square both sides
(x +1)²/(x -1)² = (a +2b)/(a -2b)
(a -2b)(x +1)² = (a +2b)(x -1)²
(a -2b)x² +2(a -2b)x +(a -2b) = (a +2b)x²-2(a +2b)x +( a +2b)
( a +2b -a +2b)x² -2x(a +2b+a-2b)x +( a+2b-a +2b)
4bx² -4ax + 4b = 0
bx² -ax + b =0
hence proved ////
Lipimishra2:
Thanks a lot for helping out. The question itself is a bit too difficult for me, so it took quite some time figuring out the processes and steps you wrote. As I was not quite familiar with the componendo, divendo method. But I understand now. Thanks a lot again for the help!
Answered by
34
Hope this will help you...
x ={ √ ( a + 2b) + √( a -2b)} /{ √( a+2b)-√(a-2b) }
take componendo and devedendo rule
(x +1)/( x -1) = {√(a +2b) +√(a -2b)+√(a +2b)-√(a -2b)}/{ √(a +2b) +√(a -2b)-√(a +2b) +√( a -2b)}
(x +1)/(x -1) = √(a +2b)/√(a -2b)
take square both sides
(x +1)²/(x -1)² = (a +2b)/(a -2b)
(a -2b)(x +1)² = (a +2b)(x -1)²
(a -2b)x² +2(a -2b)x +(a -2b) = (a +2b)x²-2(a +2b)x +( a +2b)
( a +2b -a +2b)x² -2x(a +2b+a-2b)x +( a+2b-a +2b)
4bx² -4ax + 4b = 0
bx² -ax + b =0
hence proved ....
Similar questions