Math, asked by jr2559740, 1 month ago

if x=a cos^3thita and y = a sin^3 thita = pie / 3​

Answers

Answered by amnaafroz7
0

Step-by-step explanation:

We have,

x=acos

3

θ ……. (1)

y=asin

3

θ ……… (2)

On differentiating to equation (1) w.r.t θ, we get

dx

=a(3cos

2

θ)(−sinθ)

dx

=−3asinθcos

2

θ

On differentiating both sides w.r.t θ, we have

2

d

2

x

=−3a(cos

2

θcosθ+sinθ(2cosθ(−sinθ)))

2

d

2

x

=−3a(cos

3

θ−2sin

2

θcosθ)

Similarly,

On differentiating to equation (2) w.r.t θ, we get

dy

=a(3sin

2

θ)(cosθ)

dy

=3asin

2

θcosθ

On differentiating both sides w.r.t θ, we have

2

d

2

y

=3a(sin

2

θ(−sinθ)+cosθ(2sinθ(cosθ)))

2

d

2

y

=3a(−sin

3

θ+2cos

2

θsinθ)

Therefore,

2

d

2

x

2

d

2

y

=

−3a(cos

3

θ−2sin

2

θcosθ)

3a(−sin

3

θ+2sinθcos

2

θ)

dx

2

d

2

y

=

(−cos

3

θ+2sin

2

θcosθ)

(−sin

3

θ+2sinθcos

2

θ)

Put θ=

6

π

,we get

dx

2

d

2

y

θ=

6

π

=

(−cos

3

(

6

π

)+2sin

2

(

6

π

)cos(

6

π

))

(−sin

3

(

6

π

)+2sin(

6

π

)cos

2

(

6

π

))

dx

2

d

2

y

θ=

6

π

=

−(

2

3

)

3

+2(

2

1

)

2

×(

2

3

)

−(

2

1

)

3

+2×

2

1

×(

2

3

)

2

dx

2

d

2

y

θ=

6

π

=

(−

8

3

3

+

4

3

)

(−

8

1

+

4

3

)

dx

2

d

2

y

θ=

6

π

=

(

8

−3

3

+2

3

)

(−

8

1+6

)

dx

2

d

2

y

θ=

6

π

=

3

7

Similar questions
Math, 22 days ago