Math, asked by Twxlxight, 1 day ago

If x = a cosα cosβ , y = a cosα sinβ and z = a sinα , show that x² + y² + z² = a²
(α = alpha β = beta, just for information)

Answers

Answered by mathsgirl500
2

Answer:

there is the answer glad to help

Attachments:
Answered by ashishks1912
1

Given :

An equation x=acos\alpha cos\beta ,y=cos\alpha sin\beta ,z=asin\alpha

To prove :

x^{2} +y^{2} +z^{2} =a^{2}

Step-by-step explanation:

  • These steps can be proved by following these steps.
  • Firstly , x^{2} must be calculated.

       x^{2} =a^{2} cos^{2} \alpha cos^{2} \beta

  • Secondly, y^{2} must be calculated.

       y^{2} =a^{2} cos^{2} \alpha sin^{2} \beta

  • Thirdly, z^{2} must be calculated.

       z^{2} =a^{2} sin^{2} \alpha

  • Sum all the terms x^{2} +y^{2} +z^{2}.

       x^{2} +y^{2} +z^{2} =a^{2} cos^{2} \alpha cos^{2} \beta+a^{2} cos^{2} \alpha sin^{2} \beta+a^{2} sin^{2} \alpha

  • Take out a^{2} as common.

       x^{2} +y^{2} +z^{2} =a^{2}[ cos^{2} \alpha cos^{2} \beta+ cos^{2} \alpha sin^{2} \beta+ sin^{2} \alpha]

  • Take cos^{2} \alpha as common from 1st and 2nd terms

       x^{2} +y^{2} +z^{2} =a^{2}[ cos^{2} \alpha (cos^{2} \beta+  sin^{2} \beta)+ sin^{2} \alpha]

  • Formula that can be used is,

      sin^{2} x+cos^{2} x=1

  • By using this formula we get,

      x^{2} +y^{2} +z^{2} =a^{2}[ cos^{2} \alpha (1)+ sin^{2} \alpha]

  • By applying this formula again,

       x^{2} +y^{2} +z^{2} =a^{2}[1]

Final answer :

x^{2} +y^{2} +z^{2} =a^{2} where x=acos\alpha cos\beta ,y=cos\alpha sin\beta ,z=asin\alpha

Similar questions