Physics, asked by afrin1kurach7eelaakh, 1 year ago

If x = a cos theta and y = b sin theta , find dy by dx

Answers

Answered by reck2
46
I'm denoting theta by z
so , x = acosz
now, dx/dz = -asinz .....eq (1)
and y = bsinz
so, dy/dz = bcosz ......eq(2)

Now, dividing eq(2) by eq (1)
we get, dy/dx = -b/a cotz. ( z for theta)
Answered by mindfulmaisel
25

The value of dy by dx \bold{=\frac{-b \cot \theta}{a}}.

Given data suggest that there are two equation with x and y, which is to be differentiated as dy with respect to dx.  

The given equation as x = a cos θ and y = b sin θ. The differentiation as \frac{d y}{d x} is given by differentiating individual by θ. Thereby, \frac{d x}{d \theta}=\frac{d}{d \theta(a \cos \theta)}.  

\begin{array}{l}{\Rightarrow \frac{\mathrm{d} \mathrm{x}}{\mathrm{d} \theta}=\frac{\mathrm{a} \mathrm{d}}{\mathrm{d} \theta \cos \theta}} \\ \\ {\Rightarrow \frac{\mathrm{d} \mathrm{x}}{\mathrm{d} \theta}=\mathrm{a}(-\sin \theta)} \\ \\{\Rightarrow \frac{\mathrm{d} \mathrm{x}}{\mathrm{d} \theta}=-\mathrm{a} \sin \theta}\end{array}.

Similarly, \frac{d y}{d \theta}=\frac{d}{d \theta(b \sin \theta)}  

\Rightarrow \frac{\mathrm{d} \mathrm{y}}{\mathrm{d} \theta}=\mathrm{b} \cos \theta

\Rightarrow \text { Now, we have } \frac{\mathrm{d} \mathrm{x}}{\mathrm{d} \theta} \text { and } \frac{\mathrm{dy}}{\mathrm{d} \theta}

So, \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\left(\frac{\mathrm{d} \mathrm{y}}{\mathrm{d} \theta}\right)}{\left(\frac{\mathrm{d} \mathrm{x}}{\mathrm{d} \theta}\right)}

\begin{array}{l}{\Rightarrow \frac{d y}{d x}=\frac{(b \cos \theta)}{(-a \sin \theta)}} \\ \\{\Rightarrow \frac{d y}{d x}=\frac{-b \cot \theta}{a}}\end{array}

Similar questions