Math, asked by krishna5508C, 1 year ago

if x = a cos3 theta and y = b sin3 theta then prove (x / a)^ 2/3 + (y / b)^2/3 =1​

Answers

Answered by rakhithakur
1
put the values of x and y in the equation .
(acos^3theta/a)2/3 + (bsin^3theta)2/3
a^2cos^2theta/a^2 + b^2sin^2theta/b^2
cos^theta + sin^theta
1
1=1
LHS=RHS
Answered by silentlover45
4

\underline\mathfrak{Given:-}

  • \: \: \: \: \: \: \: x \: \: = \: \: a{Cos}^{3}\emptyset

  • \: \: \: \: \: \: \: y \: \: = \: \: b{Sin}^{3}\emptyset

\underline\mathfrak{To \: \: Find:-}

  • \: \: \: \: \: {(\dfrac{x}{a})}^{\dfrac{2}{3}} \: + \: {(\dfrac{y}{b})}^{\dfrac{2}{3}} \: \: = \: \: {1}

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: \: \: Let \: \: the \: \: Value \: \: of \: \: x \: \: and \: \: y ?

\: \: \: \: \: \leadsto {x} \: \: = \: \: {a{Cos}^{3}\emptyset}

\: \: \: \: \: \leadsto {a{Cos}^{3}\emptyset} \: \: = \: \: \dfrac{x}{a}

\: \: \: \: \: \leadsto {b{Sin}^{3}\emptyset} \: \: = \: \: \dfrac{y}{b}

\: \: \: \: \: \leadsto {y} \: \: = \: \: {b{Sin}^{3}\emptyset}

\: \: \: \: \: Now,

\: \: \: \: \: {(\dfrac{x}{a})}^{\dfrac{2}{3}} \: + \: {(\dfrac{y}{b})}^{\dfrac{2}{3}} \: \: = \: \: {1}

  • \: \: \: \: \: {put \: \: the \: \: value \: \: of \: \: \dfrac{x}{a} \: \: and \: \: \dfrac{y}{b}}

\: \: \: \: \: \leadsto {({Cos}^{3} \: \emptyset)}^{\dfrac{2}{3}} \: + \: {({Sin}^{3} \: \emptyset)}^{\dfrac{2}{3}} \: \: = \: \: {1}

\: \: \: \: \: \leadsto {Cos}^{{3} \: \times \: \dfrac{2}{3}} \emptyset \: + \: {Sin}^{{3} \: \times \: \dfrac{2}{3}} \emptyset \: \: = \: \: {1}

\: \: \: \: \: \leadsto {{Cos}^{2} \: \emptyset} \: + \: {{Sin}^{2} \: \emptyset} \: \: = \: \: {1}

\: \: \: \: \: \leadsto {{Sin}^{2} \: \emptyset} \: + \: {{Cos}^{2} \: \emptyset} \: \: = \: \: {1}

  • \: \: \: \: \: \: proved.

__________________________________

Similar questions