Math, asked by keerthana4293, 4 months ago

If x = a cos30°,y=b sin 30°, then
x^2/a^2 + y^2/b^2=
(A)a^2
(B)b^2
(C)1
(D)a^2+b^2
pls answer it soon

Answers

Answered by rajeevr06
1

Answer:

x = a \: cos30 \\  \frac{x}{a}  = cos30 =  \frac{ \sqrt{3} }{2}

y = b \: sin30  \\  \frac{y}{b}  = sin30 =  \frac{1}{2}

now \\  \frac{ {x}^{2} }{ {a}^{2} }  +  \frac{ {y}^{2} }{ {b}^{2} }  =  {( \frac{ \sqrt{3} }{2} )}^{2}  +  {( \frac{1}{2} )}^{2}  =  \\  \frac{3}{4}  +  \frac{1}{4}  =  \frac{3 + 1}{4}  = 1 \\ option \: c \: correct

Answered by ItzShrestha41
1

Step-by-step explanation:

x = a \: cos30 \\  \frac{x}{a}  = cos30 =  \frac{ \sqrt{3} }{2}

y = b \: sin30  \\  \frac{y}{b}  = sin30 =  \frac{1}{2}

now \\  \frac{ {x}^{2} }{ {a}^{2} }  +  \frac{ {y}^{2} }{ {b}^{2} }  =  {( \frac{ \sqrt{3} }{2} )}^{2}  +  {( \frac{1}{2} )}^{2}  =  \\  \frac{3}{4}  +  \frac{1}{4}  =  \frac{3 + 1}{4}  = 1 \\ option \: c \: correct

Similar questions