If x=a cosA and y=b sinA.Find b^2x^2+a^2y^2-a^2b^2
Answers
Answered by
5
b^2x^2+a^2y^2+a^2b^2.
put value x=a cosA , y=bsinA
b^2a^2 cos^2A + a^2b^2 sin^2A - a^2b^2
a^2b^2 ( cos^2A+ sin^2A - 1 )
: put 【sin^2A + cos^2A=1】
a^2b^2 ( 1 - 1 )
a^2b^2 (0)
0
put value x=a cosA , y=bsinA
b^2a^2 cos^2A + a^2b^2 sin^2A - a^2b^2
a^2b^2 ( cos^2A+ sin^2A - 1 )
: put 【sin^2A + cos^2A=1】
a^2b^2 ( 1 - 1 )
a^2b^2 (0)
0
Answered by
11
Hi ,
x = a cosA
x /a = cosA ----( 1 )
y = b sinA
y / b = sinA ----( 2 )
( cosA + sinA )² = cos² A + sin² A + 2cosAsinA
( x/a + y/b )² = 1 + 2 cosAsinA
[since cos² A + sin² A = 1 ]
[ from ( 1 ) and ( 2 ) ]
(x/a)² + ( y/b)² + 2 xy/ab = 1 + 2xy/ab
x²/a² + y² / b² = 1
multiply each term with a² b² , we get
b² x²+ a² y² = a² b²
Therefore ,
b²x² + a² y² - a² b² = 0
I hope this helps you.
:)
x = a cosA
x /a = cosA ----( 1 )
y = b sinA
y / b = sinA ----( 2 )
( cosA + sinA )² = cos² A + sin² A + 2cosAsinA
( x/a + y/b )² = 1 + 2 cosAsinA
[since cos² A + sin² A = 1 ]
[ from ( 1 ) and ( 2 ) ]
(x/a)² + ( y/b)² + 2 xy/ab = 1 + 2xy/ab
x²/a² + y² / b² = 1
multiply each term with a² b² , we get
b² x²+ a² y² = a² b²
Therefore ,
b²x² + a² y² - a² b² = 0
I hope this helps you.
:)
Similar questions