Math, asked by ninethy, 1 year ago

If x+a is a factor of x^2+ px + q and x^2+ mx+ n then prove that a= n-q/ m-p

Answers

Answered by kitu2
20
x+a=0
=x=-a
=(x)^2+p(x)+q
=-a^2+p(-a)+q
=a^2-ap+q

=(x)^2+mx+n
=a^2-am+n
Since x+a is a factor of x^2+px+q and x^2+mx+n
=a^2-ap+q=a^2-am+n
=a^2-a^2-ap+q=-am+n
=-am+n=-ap+q
=q-n=am-ap
=n-q=a(m-p)
=(n-q)÷(m-p)=a
Answered by omaryan14324
3

Answer:

a = \frac{n-q}{m-p}    

Step-by-step explanation:

x+a=0  [x+a is a factor]

x=-a -------------(i)

x^{2} +px+q  and  x^{2} + mx+n  are factor of  x+a.

Then we can write

x^{2} +px+q = x^{2} +mx+n

(-a)^{2} +p(-a)+q = (-a)^{2} +m(-a)+n  [∵ x=-a {from eq^{n}(i)}]

a^{2} -pa+q = a^{2} -ma+n

-pa+q = -ma+n

-pa+ma = n-q

a(-p+m) = n-q

a(m-p) = n-q

a = \frac{n-q}{m-p}

Hence Proved

I hope it will help you.

Please mark me as Brainliest

Similar questions