If x = a sec θ and y = b tan θ, thenb²x²-a²y² =
(a)ab
(b)a² − b²
(c)a² + b²
(d)a² b²
Answers
Answer:
The value of b²x² - a²y² is a²b².
Among the given options option (d) a²b² is correct.
Step-by-step explanation:
Given : x = a sec θ and y = b tanθ
On Substituting the values of x and y in the given expression b²x² - a²y²,
b²x² - a²y² = b²(a sec θ)² - a²(b tan θ)²
= b²a²sec²θ - a²b²tan²θ
= a²b²(sec²θ - tan²θ)
= a²b² × 1
[By using the identity , sec² θ - tan² θ = 1]
b²x² - a²y² = a²b²
Hence, the value of b²x² - a²y² is a²b².
HOPE THIS ANSWER WILL HELP YOU...
Answer:
b² x² - a² y² = a² b²
Option a. is correct .
Step-by-step explanation:
Given ;
x = a sec θ and y = b tan θ
Squaring both equation we get :
x² = a² sec² θ ... ( i )
y² = b² tan² θ ... ( ii )
Let ,
b² x²- a² y² = p
Putting x² and y² values from ( i ) and ( ii ) in p
p = b² a² sec² θ - a² b² tan² θ
p = a² b² sec² θ - a² b² tan² θ
Taking a² b² as common we get
p = a² b² ( sec² θ - tan² θ )
We know ( sec² θ - tan² θ ) = 1
⇒ p = a² b²
b² x² - a² y² = a² b²
Thus we get answer .