If x = a sec θ cos φ, y = b sec θ sin φ and z = c tan θ, then x²/a²+y²/b²
A. z²/c²
B. 1-z²/c²
C. z²/c²-1
D.1+z²/c²
Answers
Answered by
0
x²/a² + y²/b² = z²/c² + 1
Step-by-step explanation:
Given, x= asecθ.cosϕ
x/a = secθ.cosϕ
Squaring on both sides, x²/a² = sec²θ.cos²ϕ -------------(1)
Given, y = bsecθ.sinϕ
y/b = secθ.sinϕ
Squaring on both sides, y²/b² = sec²θ.sin²ϕ ----------------(2)
Given, z = ctanθ
squaring on both sides, z² = c²tan²θ -----------(3)
We know that cos²ϕ + sin²ϕ = 1
From (1) and (2), we get: x²/a² + y²/b² = sec²θ.cos²ϕ + sec²θ.sin²ϕ
= sec²θ (cos²ϕ + sin²ϕ)
= sec²θ
x²/a² + y²/b² = tan²θ + 1 -----------------(4)
From (3) and (4), we get: x²/a² + y²/b² = tan²θ + 1
x²/a² + y²/b² = z²/c² + 1
Hence proved.
Option D is the answer.
Similar questions
Science,
5 months ago
Math,
5 months ago
India Languages,
11 months ago
Chemistry,
1 year ago
Hindi,
1 year ago