Math, asked by Swetalipanda, 1 year ago

If x = a sec theta + b tan theta n y = a tan theta + b sec theta then proove tat :
x { }^{2}  - y {}^{2}  = a {}^{2}  - b {}^{2}

Answers

Answered by sankojumanasa19
3
X=asec+btan
Y=atan+bsec
 {x}^{2}  -  {y}^{2}  = {(asec + btan)}^{2}  -  {(atan + bsec)}^{2}  \\  {a}^{2} . {sec}^{2}  +  {b}^{2} . {tan}^{2}  + 2.a.b.sec.tan - ( {a}^{2}. {tan}^{2}  + {b}^{2}. {sec}^{2} + 2.a.b.sec.tan \\  {a}^{2}  {sec}^{2} +  {b}^{2}. {tan}^{2}  -  {b}^{2}. {sec}^{2}  -  {a}^{2}. {tan}^{2} \\  {a}^{2} ( {sec}^{2}  -  {tan}^{2} ) +  {b}^{2} ( {tan}^{2}  -  {sec}^{2} ) \\  {a}^{2} .(1)  -  {b}^{2} .( {sec}^{2}  -  {tan}^{2} ) \\  =  {a}^{2}  -  {b}^{2}  \\ lhs = rhs \\ hence \: proved
Answered by sp5969783
1
hence prove you are satisfied
Attachments:
Similar questions