If X=a sec U and y=B tan U prove that b^2x^2-a^2y^2=a^2b^2?
Please answer me some one it's urgent
Answers
Answered by
1
:
let A = theta
x² - y² = a² sec² A + b² tan² A + 2 ab secA tan A
- (a² tan² A + b² sec²A + 2ab tanA secA)
= a² (sec²A - tan²A) + b² (sec²A - tan²A)
= a² - b²
Similar questions